

A Product of the FEMP O&M Center of Excellence

Best Practices

A Guide to Achieving Operational Efficiency

Release 2.0

Technology

Energy and Water

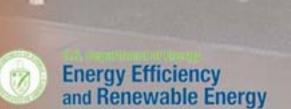
Management

Environment

Training

Economics

Administration


Engineering

July 2004

Operational Efficiency

Bringing you a prosperous future where energy is clean abundant reliable and affordable

1-877-337-3463

Federal Energy Management Program www.eere.energy.gov/femp

Release 2.0

Operations & Maintenance

Best Practices

A Guide to Achieving Operational Efficiency

G. P. Sullivan R. Pugh A. P. Melendez W. D. Hunt

July 2004

Prepared by Pacific Northwest National Laboratory for the Federal Energy Management Program U.S. Department of Energy

Disclaimer

This report was sponsored by the United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program. Neither the United States Government nor any agency or contractor thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or contractor thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or contractor thereof.

Preface

This Operations and Maintenance (O&M) Best Practices Guide was developed under the direction of the U.S. Department of Energy's Federal Energy Management Program (FEMP). The mission of FEMP is to reduce the cost and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of distributed and renewable energy, and improving utility management decisions at federal sites. Each of these activities is directly related to achieving requirements set forth in the *Energy Policy Act of 1992* and the goals that have been established in Executive Order 13123 (June 1999), but also those that are inherent in sound management of federal financial and personnel resources.

Release 2.0 of this guide highlights O&M programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. Depending on the federal site, these savings can represent thousands to hundreds-of-thousands dollars each year, and many can be achieved with minimal cash outlays. In addition to energy/resource savings, a well-run O&M program will:

- Increase the safety of all staff, as properly maintained equipment is safer equipment.
- Ensure the comfort, health and safety of building occupants through properly functioning equipment providing a healthy indoor environment.
- Confirm the design life expectancy of equipment is achieved.
- Facilitate the compliance with federal legislation such as the *Clean Air Act* and the *Clean Water Act*.

The focus of this guide is to provide the Federal O&M/Energy manager and practitioner with information and actions aimed at achieving these savings and benefits.

The guide consists of eleven chapters. The first chapter is an introduction and an overview. Chapter 2 provides the rationale for "Why O&M?" Chapter 3 discusses O&M management issues and their importance. Chapter 4 examines Computerized Maintenance Management Systems (CMMS) and their role in an effective O&M program. Chapter 5 looks at the different types of maintenance programs and definitions. Chapter 6 focuses on maintenance technologies, particularly the most accepted predictive technologies. Chapter 7 describes the building commissioning process and how it contributes to effective O&M. Chapter 8 covers the topic of metering and its applications for improved operations and efficiency. Chapter 9 explores O&M procedures for the predominant equipment found at most federal facilities. Chapter 10 describes some of the promising O&M technologies and tools on the horizon to increase O&M efficiency. Chapter 11 provides ten steps to initiating an operational efficiency program. Additional information is provided in the appendixes.

Acknowledgments

This report is the result of numerous people working to achieve a common goal of improving operations and maintenance and energy efficiency across the federal sector. The authors wish to acknowledge the contribution and valuable assistance provided by the staff of the Federal Energy Management Program (FEMP). Specifically, we would like to thank Ab Ream, FEMP O&M Program Manager, for his leadership and support of this program.

In addition, the authors would like to thank Eric Richman and Carol Jones, both of Pacific Northwest National Laboratory (PNNL), and Hayden McKay of Hayden McKay Lighting Design, Inc. for the excellent job they did in updating the Lighting section.

Also, the authors would like to extend their appreciation to PNNL's document production team – Dave Payson, Kathy Neiderhiser, and Jamie Gority – for the conscientious, team-oriented, and high-quality assistance they brought to this project.

Contents

Pret	ace	111
Ack	nowledgments	V
Cha	pter 1 Introduction and Overview	1.1
1.1	About This Guide	1.1
1.2	Target Audience	1.1
1.3	Organization and Maintenance of the Document	1.2
Cha	pter 2 Why O&M?	2.1
2.1	Introduction	2.1
2.2	Definitions	2.1
2.3	Motivation	2.1
2.4	O&M Potential, Energy Savings, and Beyond	2.3
2.5	References	2.4
Cha	pter 3 O&M Management	3.1
3.1	Introduction	3.1
3.2	Developing the Structure	3.1
3.3	Obtain Management Support	3.2
3.4	Measuring the Quality of Your O&M Program	3.3
3.5	Selling O&M to Management	3.4
3.6	Program Implementation	3.4
3.7	Program Persistence	3.5
3.8	O&M Contracting	3.5
J.0	3.8.1 Contract Incentives	3.6
	3.8.2 Model Contract Language	3.8
3.9		3.9
J.7	References	3.9
Cha	upter 4 Computerized Maintenance Management System	4.1
4.1	Introduction	4.1
4.2	CMMS Capabilities	4.1
4.3	CMMS Benefits	4.2
4.4	Reference	4.2
Cha	pter 5 Types of Maintenance Programs	5.1
5.1	Introduction	5.1
	Reactive Maintenance	5.1

5.3 5.4		ntive Maintenancetive Maintenance	5.2 5.3
5.5		ility Centered Maintenance	5.4
5.6		o Initiate Reliability Centered Maintenance	5.5
5.7	Refere	nce	5.8
Cha	pter 6	Predictive Maintenance Technologies	6.1
6.1	Introd	uction	6.1
6.2	Therm	nography	6.3
	6.2.1	Introduction	6.3
	6.2.2	Types of Equipment	6.3
	6.2.3	System Applications	6.4
	6.2.4	Equipment Cost/Payback	6.9
	6.2.5	Case Studies	6.10
	6.2.6	References/Resources	6.11
6.3		nalysis	6.13
	6.3.1	Introduction	6.13
	6.3.2	Test Types	6.14
	6.3.3	Types of Equipment	6.16
	6.3.4	System Applications	6.17
	6.3.5	Equipment Cost/Payback	6.17
	6.3.6	Case Studies	6.17
	6.3.7	References/Resources	6.18
6.4		onic Analysis	6.21
	6.4.1	Introduction	6.21
	6.4.2	Types of Equipment	6.22
	6.4.3	System Applications	6.23
	6.4.4	Equipment Cost/Payback	6.24
	6.4.5	Case Studies	6.24
	6.4.6	References/Resources	6.25
6.5		ion Analysis	6.27
	6.5.1	Introduction	6.27
	6.5.2	Types of Equipment	6.28
	6.5.3	System Applications	6.29
	6.5.4	Equipment Cost/Payback	6.30
	6.5.5	Case Studies	6.30
	6.5.6	References/Resources	6.30
6.6		Analysis	6.33
	6.6.1	Introduction	6.33
	6.6.2	Motor Analysis Test	6.33
	6.6.3	System Applications	6.34
	6.6.4	Equipment Cost/Payback	6.34
	6.6.5	References/Resources	6.34
6.7		mance Trending	6.37
	6.7.1	Introduction	6.37
	6.7.2	How to Establish a Performance Trending Program	6.37
	6.7.3	System Applications	6.38

	6.7.4 6.7.5	1 1 ' /	6.38
Cha	pter 7	Commissioning Existing Buildings	7.1
7.1		uction	7.
7.2		ions	7.
7.3	, .	Findings from Existing Building Commissioning	7.3
7.4		and Benefits	7.3
	7.4.1	New Building Commissioning Costs and Benefits	7.4
	7.4.2	Existing Building Commissioning Costs and Benefits	7.5
7.5		ommissioning Process	7.5
7.6		issioning Provider Qualifications	7.6
7.7		ture of Building Commissioning	7.6
7.8		tudy	7.6
7.9		onal Resources	7.8
1.10	Keferer	nces	7.8
Cha	pter 8 N	Metering for Operations and Maintenance	8.1
8.1	Introdu	action	8.1
8.2		ance of Metering	8.1
8.3	Meterin	ng Applications	8.2
8.4	Meterin	ng Approaches	8.3
	8.4.1	One-Time/Spot Measurements	8.3
	8.4.2	Run-Time Measurements	8.3
	8.4.3	Short-Term Measurements/Monitoring	8.4
	8.4.4	Long-Term Measurements/Monitoring	8.4
8.5	Meterin	ng System Components	8.5
	8.5.1	Meters	8.5
	8.5.2	Data Collection	8.5
	8.5.3	Data Storage	8.5
	8.5.4	Data Analysis	8.7
		ng Economics	8.7
		n Meter Planning	8.8
8.8	Referer	nces	8.9
Cha	pter 9	D&M Ideas for Major Equipment Types	9.1
9.1	Introdu	action	9.1
9.2		ICTIOIT	9.3
1.2	9.2.1	Introduction	9.3
	9.2.2	Types of Boilers	9.3
	9.2.3	Key Components	9.5
	9.2.4	Safety Issues	9.8
	9.2.5	Cost and Energy Efficiency	9.9
	9.2.6	9	9.12
	9.2.7		9.12
	9.2.8	<u> </u>	9.13

	9.2.9	Boilers Checklist
	9.2.10	References
9.3	Steam	Traps
	9.3.1	Introduction
	9.3.2	Types of Steam Traps
	9.3.3	Safety Issues
	9.3.4	Cost and Energy Efficiency
	9.3.5	Maintenance of Steam Traps
	9.3.6	Diagnostic Tools
	9.3.7	Case Studies
	9.3.8	Steam Traps Checklist
	9.3.9	References
9.4	Chiller	'S
	9.4.1	Introduction
	9.4.2	Types of Chillers
	9.4.3	Key Components
	9.4.4	Safety Issues
	9.4.5	Cost and Energy Efficiency
	9.4.6	Maintenance of Chillers
	9.4.7	Diagnostic Tools
	9.4.8	Chillers Checklist
	9.4.9	References
9.5	•	g Towers
, ,,	9.5.1	Introduction
	9.5.2	Types of Cooling Towers
	9.5.3	Key Components
	9.5.4	Safety Issues
	9.5.5	Cost and Energy Efficiency
	9.5.6	Maintenance of Cooling Towers
	9.5.7	Common Causes of Cooling Towers Poor Performance
	9.5.8	Diagnostic Tools
	9.5.9	Cooling Towers Checklist
		References
96		Management/Building Automation Systems
7.0	9.6.1	Introduction
	9.6.2	System Traps
	9.6.3	Key Components
	9.6.4	Safety Issues
	9.6.5	Cost and Efficiency
	9.6.6	Maintenance
	9.6.7	Diagnostic Tools
	9.6.8	Case Studies
	9.6.9	Building Controls Checklist
	9.6.9	<u> </u>
0.7		References
9.7	-	Introduction
	9.7.1	Introduction
	9.7.2	Types of Pumps
	9.7.3	Key Components

	9.7.4	Safety Issues	9.50
	9.7.5	Cost and Energy Efficiency	9.51
	9.7.6	Maintenance of Pumps	9.51
	9.7.7	Diagnostic Tools	9.52
	9.7.8	Case Study	9.53
	9.7.9	Pumps Checklist	9.54
	9.7.10	References	9.54
9.8		Teleficies	9.57
). ()	9.8.1	Introduction	9.57
	9.8.2	Types of Fans	9.57
	9.8.3	Key Components	9.59
	9.8.4	Safety Issues	9.59
	9.8.5	Cost and Energy Efficiency	9.59
	9.8.6	Maintenance of Fans	9.59
	9.8.7		9.60
		Diagnostic Tools	
	9.8.8	Case Studies	9.60
	9.8.9	Fans Checklist	9.61
0.0		References	9.61
9.9		T 1 .	9.63
	9.9.1	Introduction	9.63
	9.9.2	Types of Motors	9.63
	9.9.3	Key Components	9.65
	9.9.4	Safety Issues	9.66
	9.9.5	Cost and Energy Efficiency	9.66
	9.9.6	Maintenance of Motors	9.67
	9.9.7	Diagnostic Tools	9.68
	9.9.8	Electric Motors Checklist	9.69
	9.9.9	References	9.69
9.10	Air Co	mpressors	9.71
	9.10.1	Introduction	9.71
	9.10.2	Types of Air Compressors	9.71
	9.10.3	Key Components	9.72
	9.10.4	Safety Issues	9.73
	9.10.5	Cost and Energy Efficiency	9.74
	9.10.6	Maintenance of Air Compressors	9.76
		Diagnostic Tools	9.78
		Case Study	9.78
		Air Compressors Checklist	9.79
		References	9.80
9.11		g	9.83
,	9.11.1		9.83
			9.83
		Safety Issues	9.93
			9.95
	9.11.4		9.93
			9.99
		Lighting Checklist	
	7.11.1	References	9.107

Chapt	ter 10 O&M Frontiers	10.1
10.2 10.3 10.4 10.5	ACRx Handtool/Honeywell HVAC Service Assistant Decision Support for O&M ENFORMA® Portable Diagnostic Solutions Performance and Continuous Commissioning Analysis Tool The Whole-Building Diagnostician Reference	10.1 10.1 10.2 10.2 10.2 10.3
Chapt	ter 11 Ten Steps to Operational Efficiency	11.1
Apper Apper	ndix A – Glossary of Common Terms	A.1 B.1 C.1 D.1
	Figures	
6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.2.8	Typical IR spot thermometer Internal house wall Temperature is used in defining belt problems Air breaker problem Overload connection problem Warm inboard motor bearing Possible gearbox problem indicated by white area defined by arrow Seized conveyer belt roller as indicated by elevated temperatures in belt/roller	6.3 6.4 6.4 6.6 6.6 6.7
6.2.9 6.2.10	Inoperable steam heaters seen by cooler blue areas when compared to the operating heaters warmer red or orange colors Refractory breakdown readily seen by white area in IR image	6.7 6.7 6.8
6.2.11	IR is a predictive technology in defining bearing problems as indicated in this IR image	6.8
6.2.12	Steam or hot water distribution system leaks and/or underground line location can be defined with IR	6.8 6.28
6.5.2 6.5.3	FFT - Example of graph breaking down vibration level at different frequencies	6.28 6.28
8.1.1 8.5.1 8.7.1	Typical utility socket-type meter	8.1 8.5 8.9
9.2.1 9.2.2 9.2.3	Horizontal return fire-tube boiler Longitudinal-drum water-tube boiler	9.3 9.4
9.2.3	Electric boiler	9.4 9.8

9.2.5	Effect of fouling on water side	9
9.3.1	Inverted bucket steam trap	9.1
9.3.2	Bimetallic steam trap	9.2
9.3.3	Bellows steam trap	9.2
9.3.4	Float and thermostatic steam trap	9.2
9.3.5	Disc steam trap	9.2
9.3.6	Energy loss from leaking steam traps	9.2
9.3.7	Failed gasket on blind flange	9.2
9.4.1	Basic cooling cycle-centrifugal unit using single-stage compressor	9.2
9.4.2	Schematic of typical absorption chiller	9.3
9.5.1	Cooling tower	9.3
9.5.2	Direct or open cooling tower	9.3
9.7.1	Technology tree for pumps	9.4
9.7.2	Rotary lobe pump	9.4
9.7.3	Positive displacement pumps	9.
9.7.4	Centrifugal pump	9.
9.7.5	Schematic of pump and relief valve	9.
9.7.6	Pump system energy use and savings	9.
9.7.7	Retrofit cost savings	9.
9.8.1	Propeller direct-drive fan	9.
9.8.2	Propeller belt-drive fan	9.
9.8.3	Tube-axial fan	9.
9.8.4	Vane axial fan	9.
9.8.5	Centrifugal fan	9.
9.9.1	DC motor	9.
9.9.2	AC motor	9.
9.9.3	Parts of a direct current motor	9.
9.9.4	Parts of an alternating current motor	9.
9.10.1	Rotary screw compressor	9.
9.10.2	Typical single acting two-stage compressor	9.
9.10.3	Helical-lobe rotors	9.
9.11.1	Fluorescent lamp/ballast efficacy	9.
9.11.2	Wall-box occupancy sensor uses hidden internal dip-switches to set manual-on,	
	auto-off	9.
9.11.3	Photosensor and fluorescent dimming ballast for continuous daylight dimming	9.
9.11.4	Repair and rewiring must be done by a licensed electrician	9.
9.11.5	Fluorescent lamp mortality curve	9.
9.11.6	Lighting uniformity and fixture spacing criteria	9.
9.11.7	Ceiling occupancy sensor	9.1

Chapter 1 Introduction and Overview

The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industry experts. The information and case studies that appear in this guide resulted from these activities.

It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost.

As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.

Actions and activities recommended in this guide should only be attempted by trained and certified personnel. If such personnel are not available, the actions recommended here should not be initiated.

1.1 About This Guide

This guide is designed to serve as a resource for O&M management and technical staff. It does not try to represent the universe of O&M-related material. Rather, it attempts to:

- Provide needed background information on why O&M is important and the potential for savings from good O&M.
- Define the major O&M program types and provide guidance on the structure of a good O&M program.
- Provide information on state-of-the-art maintenance technologies and procedures for key equipment.
- Identify information sources and contacts to assist you in getting your job done.

1.2 Target Audience

O&M/Energy managers, practitioners, and technical staff represent the prime focus of this document. However, a competent O&M program requires the participation of staff from five well-defined

areas: Operations, Maintenance, Engineering, Training, and Administration. While a given site may not have all five of these areas as separate entities, these functions are provided for within the organization. It is these staff that are targeted.

A successful O&M program requires cooperation, dedication, and participation at all levels and cannot succeed without everyone involved understanding the basic principles and supporting the cause.

1.3 Organization and Maintenance of the Document

It is the intention of the authors to update this guide periodically as new O&M procedures and technologies are developed and employed. This guide can be found on the FEMP Web site at www.eere.energy.gov/femp/operations_maintenance/, under Related Publications.

The guide consists of eleven chapters. This chapter provides an introduction and an overview. Chapter 2 provides the rationale for "Why O&M?" Chapter 3 discusses O&M management issues and their importance. Chapter 4 examines Computerized Maintenance Management Systems (CMMS) and their role in an effective O&M program. Chapter 5 looks at the different types of maintenance programs and definitions. Chapter 6 focuses on maintenance technologies, particularly the most accepted predictive technologies. Chapter 7 describes the building commissioning process and how it contributes to effective O&M. Chapter 8 covers the topic of metering and its applications for improved operations and efficiency. Chapter 9 explores O&M procedures for the predominant equipment found at most federal facilities. Chapter 10 describes some of the promising O&M technologies and tools on the horizon to increase O&M efficiency. Chapter 11 provides ten steps to initiating an operational efficiency program.

The O&M environment is in a constant state of evolution and the technologies and vocabularies are ever expanding. Therefore, a glossary of terms is presented in Appendix A. Appendix B provides a list of federal contacts for training and assistance. Appendix C includes a list of organizations and trade groups that have interest or are related to O&M. And finally, Appendix D is a form that can be used to submit suggestions or revisions to this guide.

Again, we designed this to be a useful document, and we welcome your input to help us keep it current. Please feel comfortable to make suggestions for changes, additions, or deletions using the form found in Appendix D.

Chapter 2 Why O&M?

2.1 Introduction

Effective O&M is one of the most cost-effective methods for ensuring reliability, safety, and energy efficiency. Inadequate maintenance of energy-using systems is a major cause of energy waste in both the federal government and the private sector. Energy losses from steam, water and air leaks, uninsulated lines, maladjusted or inoperable controls, and other losses from poor maintenance are often considerable. Good maintenance practices can generate substantial energy savings and should be considered a resource. Moreover, improvements to facility maintenance programs can often be accomplished immediately and at a relatively low cost.

2.2 Definitions

Operations and Maintenance are the decisions and actions regarding the control and upkeep of property and equipment. These are inclusive, but not limited to, the following: 1) actions focused on scheduling, procedures, and work/systems control and optimization; and 2) performance of routine, preventive, predictive, scheduled and unscheduled actions aimed at preventing equipment failure or decline with the goal of increasing efficiency, reliability, and safety.

Operational Efficiency represents the life-cycle, cost-effective mix of preventive, predictive, and reliability-centered maintenance technologies, coupled with equipment calibration, tracking, and computerized maintenance management capabilities all targeting reliability, safety, occupant comfort, and system efficiency.

2.3 Motivation

In June 2000, Executive Order 13123 went into effect promoting government-wide energy efficiency and renewable energy, thereby revoking Executive Orders 12902 and 12759, both of which dealt with reducing the government's energy use. The new Executive Order strengthens the government's efforts to pursue energy and cost savings, and raises the energy savings goal to a 35% reduction in energy consumption per square foot in non-exempt federal buildings by the year 2010 compared to a 1985 baseline.

There are multiple goals defined by the Order. The more important goals from the federal buildings perspective are to:

- Reduce energy use intensity (MMBtu/ft²/year) 30% from the fiscal year (FY) 1985 baseline by FY 2005.
- Reduce energy use intensity 35% from the FY 1985 baseline by FY 2010.
- Increase the use of cost-effective renewable energy and reduce reliance on petroleum-based fuels, and identify and implement all cost-effective water conservation retrofits and operational improvements.

Clearly, these are aggressive targets and many federal facilities have been working hard to achieve them. In many cases, the approach to achieving these goals has focused on capital intensive upgrades of existing equipment and making use of a variety of financing options including Energy Savings Performance Contracts (ESPCs), local utility financing programs, and other third-party financing options.

While effective, some feel that capital upgrades are not always the most cost-effective solution. Indeed, the authors of this guide contend that low-cost/no-cost O&M measures (including activities referred to as retrocommissioning or retuning) should be the **first** energy savings measure considered. O&M measures should be considered prior to the installation of energy conservation measures for the following reasons:

- Typically, O&M measures are low-cost or no-cost in nature.
- Many O&M measures are easily installed by in-house personnel.
- O&M measures can have immediate payback.
- These measures rarely require the design time, bid preparation, evaluation, and response compared to capital projects that can take up to a year to implement.

Is an Energy Savings Performance Contract Being Considered? (Haasl and Sharp 1999)

Some level of retrocommissioning (i.e., O&M best practices) is usually appropriate if you are considering any type of energy savings agreement such as an energy savings performance contract. There are two primary reasons for performing retrocommissioning before obtaining an energy-savings agreement. First, the low-cost energy savings gained from retrocommissioning remains with the building (the owner gets all of the savings) and does not become part of the financial agreement; second, retrocommissioning optimizes the existing equipment so the most appropriate capital measures are selected and financed through the agreement.

A good reason for doing retrocommissioning as part of an energy-savings agreement is to ensure that the performance of new equipment is not hindered because it interfaces with older equipment, components, or systems that are malfunctioning. Even when commissioning is specified for the new equipment, it often stops short of looking at the systems with which the new equipment interfaces or examining how it integrates with other systems or equipment that may affect its performance. This is especially true for energy management control systems. Because controls are an area where many difficulties and misunderstandings occur between building owners and performance contractors, it is a good idea to specify commissioning for both the new and existing equipment that may affect the performance of the new equipment.

When retrocommissioning is performed before the energy-savings agreement or energy savings performance contract is finalized, it is important to inform the contractor about the retrocommissioning activities and give him or her a copy of the final report. If the contractor is not informed and energy bills from prior years are used to help determine the energy baseline, the baseline may be inaccurate. This may cause the cost savings upon which the financing is based to be significantly less than expected, leading to disagreements and even legal battles.

Retrocommissioning performed up front to capture the low-cost savings may not be a wise choice if the savings from the retrocommissioning do not remain with the building but, instead, go into a general fund. In this case, the "low-cost/no-cost" improvements should be part of the performance contract. In this way, a portion of the savings stays with the building as part of the financial arrangement. Integrating the retrocommissioning measures into the energy-savings agreement is a way to capture the savings as part of the investment repayment. The amount invested can be increased when the savings estimates are higher. Moreover, the savings gained from bundling these measures with the capital upgrades – especially if some of the upgrades are marginally cost-effective (i.e., good value but with long paybacks) – help to increase the overall viability and attractiveness of the energy savings performance contract funding.

2.4 O&M Potential, Energy Savings, and Beyond

It has been estimated that O&M programs targeting energy efficiency can save 5% to 20% on energy bills without a significant capital investment (PECI 1999). From small to large sites, these savings can represent thousands to hundreds-of-thousands of dollars each year, and many can be achieved with minimal cash outlays.

Beyond the potential for significant cost and energy/resource savings, an O&M program operating at its peak *operational efficiency* has other important implications:

A demonstration focused on O&M-based energy efficiency was conducted at the U.S. Department of Energy Forrestal Building in Washington, D.C. (Claridge and Haberl 1994). A significant component to this demonstration was metering and the tracking of steam use in the building. Within several months, \$250,000 per year in steam leaks were found and corrected. These included leaks in a steam converter and steam traps. Because the building was not metered for steam and there was not a proactive O&M program, these leaks were not detected earlier, nor would they have been detected without the demonstration. The key lessons learned from this case study were:

- O&M opportunities in large buildings do not have to involve complex engineering analysis.
- Many O&M opportunities exist because building operators may not have proper information to assess day-to-day actions.
- Involvement and commitment by building administrators is a key ingredient for a successful O&M program.
- A well-functioning O&M program is a safe O&M program. Equipment is maintained properly mitigating any potential hazard arising from deferred maintenance.
- In most federal buildings, the O&M staff are responsible for not only the comfort, but also the health and safety of the occupants. Of increasing productivity (and legal) concern are indoor air quality (IAQ) issues within these buildings. Proper O&M reduces the risks associated with the development of dangerous and costly IAQ situations.
- Properly performed O&M ensures that the design life expectancy of equipment will be achieved, and in some cases exceeded.
 Conversely, the costs associated with early equipment failure are usually not budgeted for and often come at the expense of other planned O&M activities.
- An effective O&M program more easily complies with federal legislation such as the Clean Air Act and the Clean Water Act.

When Marion County, Florida, officials realized their new county courthouse was making hundreds of employees sick, they did more than send the workers to the doctor, they sued the builder/operator of the building for bad air and won a \$14.2 million judgment (Ewell 1996).

• A well functioning O&M program is not always answering complaints, rather, it is proactive in its response and corrects situations before they become problems. This model minimizes callbacks and keeps occupants satisfied while allowing more time for scheduled maintenance.

2.5 References

Claridge, J. and D. Haberl. 1994. Can You Achieve 150% of Predicted Retrofit Savings? Is it Time for Recommissioning? American Council for an Energy Efficiency Economy (ACEEE), Summer Study on Energy Efficiency in Buildings, Volume 5, Commissioning, Operation and Maintenance. ACEEE, Washington, D.C.

Clean Air Act. 1986. Public Law 88-206, as amended, 42 USC 7401 et seq.

Clean Water Act. 1997. Public Law 95-217, as amended, 91 Stat. 1566 and Public Law 96-148, as amended.

Ewell, C. 1996. Victims of 'Sick Buildings' Suing Builders, Employers. Knight-Ridder News Service.

Haasl, T. and T. Sharp. 1999. A Practical Guide for Commissioning Existing Buildings. ORNL/TM-1999/34, Oak Ridge, Tennessee.

PECI. 1999. Operations and Maintenance Assessments. Portland Energy Conservation, Inc. Published by U.S. Environmental Protection Agency and U.S. Department of Energy, Washington, D.C.

Chapter 3 O&M Management

3.1 Introduction

O&M management is a critical component of the overall program. The management function should bind the distinct parts of the program into a cohesive entity. From our experience, the overall program should contain five very distinct functions making up the organization: **O**perations, **M**aintenance, **E**ngineering, **T**raining, and **A**dministration—OMETA.

Beyond establishing and facilitating the OMETA links, O&M managers have the responsibility of interfacing with other department managers and making their case for ever-shrinking budgets. Their roles also include project implementation functions as well as the need to maintain persistence of the program and its goals.

DAN PHEREIRA

3.2 Developing the Structure

Five well-defined elements of an effective O&M program include those presented above in the OMETA concept (Meador 1995). While these elements, Operations, Maintenance, Engineering, Training, and

Administration, form the basis for a solid O&M organization, the key lies in the well-defined functions each brings and the linkages between organizations. A subset of the roles and responsibilities for each of the elements is presented below; further information is found in Meador (1995).

Operations

- *Administration* To ensure effective implementation and control of operation activities.
- *Conduct of Operations* To ensure efficient, safe, and reliable process operations.
- *Equipment Status Control* To be cognizant of status of all equipment.
- *Operator Knowledge and Performance* To ensure that operator knowledge and performance will support safe and reliable plant operation.

Maintenance

- *Administration* To ensure effective implementation and control of maintenance activities.
- *Work Control System* To control the performance of maintenance in an efficient and safe manner such that economical, safe, and reliable plant operation is optimized.
- Conduct of Maintenance To conduct maintenance in a safe and efficient manner.
- *Preventive Maintenance* To contribute to optimum performance and reliability of plant systems and equipment.

• *Maintenance Procedures and Documentation* – To provide directions, when appropriate, for the performance of work and to ensure that maintenance is performed safely and efficiently.

Engineering Support

- *Engineering Support Organization and Administration* To ensure effective implementation and control of technical support.
- *Equipment Modifications* To ensure proper design, review, control, implementation, and documentation of equipment design changes in a timely manner.
- *Equipment Performance Monitoring* To perform monitoring activities that optimize equipment reliability and efficiency.
- *Engineering Support Procedures and Documentation* To ensure that engineer support procedures and documents provide appropriate direction and that they support the efficiency and safe operations of the equipment.

Training

- Administration To ensure effective implementation and control of training activities.
- General Employee Training To ensure that plant personnel have a basic understanding of
 their responsibilities and safe work practices and have the knowledge and practical abilities
 necessary to operate the plant safely and reliably.
- *Training Facilities and Equipment* To ensure the training facilities, equipment, and materials effectively support training activities.
- *Operator Training* To develop and improve the knowledge and skills necessary to perform assigned job functions.
- *Maintenance Training* To develop and improve the knowledge and skills necessary to perform assigned job functions.

Administration

- *Organization and Administration* To establish and ensure effective implementation of policies and the planning and control of equipment activities.
- *Management Objectives* To formulate and utilize formal management objectives to improve equipment performance.
- *Management Assessment* To monitor and assess station activities to improve all aspects of equipment performance.
- **Personnel Planning and Qualification** To ensure that positions are filled with highly qualified individuals.
- *Industrial Safety* To achieve a high degree of personnel and public safety.

3.3 Obtain Management Support

Federal O&M managers need to obtain full support from their management structure in order to carry out an effective maintenance program. A good way to start is by establishing a written

maintenance plan and obtaining upper management approval. Such a management-supported program is very important because it allows necessary activities to be scheduled with the same priority as other management actions. Approaching O&M by equating it with increased productivity, energy efficiency, safety, and customer satisfaction is one way to gain management attention and support.

When designing management reports, the critical metrics used by each system should be compared with a base period. For example, compare monthly energy use against the same month for the prior year, or against the same month in a particular base year (for example, 1985). If efficiency standards for a particular system are available, compare your system's performance against that standard as well. The point of such comparisons in management reports is not to assign blame for poor maintenance and inefficient systems, but rather to motivate efficiency improvement through improved maintenance.

3.4 Measuring the Quality of Your O&M Program

Traditional thinking in the O&M field focused on a single metric, reliability, for program evaluation. Every O&M manager wants a reliable facility; however, this metric alone is not enough to evaluate or build a successful O&M program.

Beyond reliability, O&M managers need to be responsible for controlling costs, evaluating and implementing new technologies, tracking and reporting on health and safety issues, and expanding their program. To support these activities, the O&M manager must be aware of the various indicators that can be used to measure the quality or effectiveness of the O&M program. Not only are these metrics useful in assessing effectiveness, but also useful in cost justification of equipment purchases, program modifications, and staff hiring.

Below are a number of metrics that can be used to evaluate an O&M program. Not all of these metrics can be used in all situations; however, a program should use of as many metrics as possible to better define deficiencies and, most importantly, publicize successes.

- *Capacity factor* Relates actual plant or equipment operation to the full-capacity operation of the plant or equipment. This is a measure of actual operation compared to full-utilization operation.
- Work orders generated/closed out Tracking of work orders generated and completed (closed out) over time allows the manager to better understand workloads and better schedule staff.
- **Backlog of corrective maintenance** An indicator of workload issues and effectiveness of preventive/predictive maintenance programs.
- *Safety record* Commonly tracked either by number of loss-of-time incidents or total number of reportable incidents. Useful in getting an overall safety picture.
- *Energy use* A key indicator of equipment performance, level of efficiency achieved, and possible degradation.
- *Inventory control* An accurate accounting of spare parts can be an important element in controlling costs. A monthly reconciliation of inventory "on the books" and "on the shelves" can provide a good measure of your cost control practices.
- *Overtime worked* Weekly or monthly hours of overtime worked has workload, scheduling, and economic implications.

- *Environmental record* Tracking of discharge levels (air and water) and non-compliance situations.
- **Absentee rate** A high or varying absentee rate can be a signal of low worker morale and should be tracked. In addition, a high absentee rate can have a significant economic impact.
- Staff turnover High turnover rates are also a sign of low worker morale. Significant costs are incurred in the hiring and training of new staff. Other costs include those associated with errors made by newly hired personnel that normally would not have been made by experienced staff.

3.5 Selling O&M to Management

To successfully interest management in O&M activities, O&M managers need to be fluent in the language spoken by management. Projects and proposals brought forth to management need to stand on their own merits and be competitive with other funding requests. While evaluation criteria may differ, generally some level of economic criteria will be used. O&M managers need to have a working knowledge of economic metrics such as:

- **Simple payback** The ratio of total installed cost to first-year savings.
- Return on investment The ratio of the income or savings generated to the overall investment.
- **Net present value** Represents the present worth of future cash flows minus the initial cost of the project.
- *Life-cycle cost* The present worth of all costs associated with a project.

Life-Cycle Cost Training

The Basic LCC Workshop takes participants through the steps of an LCC analysis, explains the underlying theory, and integrates it with the FEMP criteria. The second classroom course, the Project-Oriented LCC Workshop, builds on the basic workshop and focuses on the application of the methodology to more complex issues in LCC analysis.

For more information: http://www.eere.energy.gov/femp/services/training.cfm

FEMP offers life-cycle cost training along with its Building Life-Cycle Cost (BLCC) computer program at various locations during the year – see Appendix B for the FEMP training contacts.

3.6 Program Implementation

Developing or enhancing an O&M program requires patience and persistence. Guidelines for initiating a new O&M project will vary with agency and management situation; however, some steps to consider are presented below:

- *Start small* Choose a project that is manageable and can be completed in a short period of time, 6 months to 1 year.
- *Select troubled equipment* Choose a project that has visibility because of a problematic history.
- *Minimize risk* Choose a project that will provide immediate and positive results. This project needs to be successful, and therefore, the risk of failure should be minimal.

- *Keep accurate records* This project needs to stand on its own merits. Accurate, if not conservative, records are critical to compare before and after results.
- *Tout the success* When you are successful, this needs to be shared with those involved and with management. Consider developing a "wall of accomplishment" and locate it in a place where management will take notice.
- **Build off this success** Generate the success, acknowledge those involved, publicize it, and then request more money/time/resources for the next project.

3.7 Program Persistence

A healthy O&M program is growing, not always in staff but in responsibility, capability, and accomplishment. O&M management must be vigilant in highlighting the capabilities and accomplishments of their O&M staff.

Finally, to be sustainable, an O&M program must be visible beyond the O&M management. Persistence in facilitating the OMETA linkages and relationships enables heightened visibility of the O&M program within other organizations.

3.8 O&M Contracting

Approximately 40% of all non-residential buildings contract maintenance service for heating, ventilation, and air conditioning (HVAC) equipment (PECI 1997). Discussions with federal building mangers and organizations indicate this value is significantly higher in the federal sector, and the trend is toward increased reliance on contracted services.

In the O&M service industry, there is a wide variety of service contract types ranging from full-coverage contracts to individual equipment contracts to simple inspection contracts. In a relatively new type of O&M contract, called End-Use or End-Result contracting, the O&M contractor not only takes over all operation of the equipment, but also all operational risk. In this case, the contractor agrees to provide a certain level of comfort (space temperature, for instance) and then is compensated based on how well this is achieved.

From discussions with federal sector O&M personnel, the predominant contract type is the full-coverage contract (also referred to as the whole-building contract). Typical full-coverage contract terms vary between 1 and 5 years and usually include options for out-years.

Upon review of several sample O&M contracts used in the federal sector, it is clear that some degree of standardization has taken place. For better or worse, some of these contracts contain a high degree of "boiler plate." While this can make the contract very easy to implement, and somewhat uniform across government agencies, the lack of site specificity can make the contract ambiguous and open to contractor interpretation often to the government's disadvantage.

When considering the use of an O&M contract, it is important that a plan be developed to select, contract with, and manage this contract. In its guide, titled *Operation and Maintenance Service Contracts* (PECI 1997), Portland Energy Conservation, Inc. did a particularly good job in presenting steps and actions to think about when considering an O&M contract. A summary of these steps are provided below.

Steps to Think About When Considering an O&M Contract

- Develop objectives for an O&M service contract, such as:
 - Provide maximum comfort for building occupants.
 - Improve operating efficiency of mechanical plant (boilers, chillers, cooling towers, etc.).
 - Apply preventive maintenance procedures to reduce chances of premature equipment failures.
 - Provide for periodic inspection of building systems to avoid emergency breakdown situations.
- Develop and apply a screening process. The screening process involves developing a series
 of questions specific to your site and expectations. The same set of questions should be
 asked to perspective contractors and their responses should be rated.
- Select two to four potential contractors and obtain initial proposals based on each contractor's building assessments. During the contractors' assessment process, communicate the objectives and expectations for the O&M service contract and allow each contractor to study the building documentation.
- Develop the major contract requirements using the contractors' initial proposals. Make sure
 to include the requirements for documentation and reporting. Contract requirements may
 also be developed by competent in-house staff or a third party.
- Obtain final bids from the potential contractors based on the owner-developed requirements.
- Select the contractor and develop the final contract language and service plan.
- Manage and oversee the contracts and documentation.
 - Periodically review the entire contract. Build in a feedback process.

The ability of federal agencies to adopt the PECI-recommended steps will vary. Still, these steps do provide a number of good ideas that should be considered for incorporation into federal maintenance contracts procurements.

3.8.1 Contract Incentives

An approach targeting energy savings through mechanical/electrical (energy consuming) O&M contracts is called contract incentives. This approach rewards contractors for energy savings realized for completing actions that are over and above the stated contract requirements.

Many contracts for O&M of federal building mechanical/electrical (energy consuming) systems are written in a prescriptive format where the contractor is required to complete specifically noted actions in order to satisfy the contract terms. There are two significant shortcomings to this approach:

• The contractor is required to complete only those actions specifically called out, but is not responsible for actions not included in the contract even if these actions can save energy, improve building operations, extend equipment life, and be accomplished with minimal additional effort. Also, this approach assumes that the building equipment and maintenance lists are complete.

• The burden to verifying successful completion of work under the contract rests with the contracting officer. While contracts typically contain contractor reporting requirements and methods to randomly verify work completion, building O&M contracts tend to be very large, complex, and difficult to enforce.

One possible method to address these shortcomings is to apply a provision of the Federal Acquisition Regulations (FAR), Subpart 16.404 – Fixed-Price with Award Fees, which allows for contractors to receive a portion of the savings realized from actions initiated on their part that are seen as additional to the original contract:

Subpart 16.404 — Fixed-Price Contracts With Award Fees.

- (a) Award-fee provisions may be used in fixed-price contracts when the Government wishes to motivate a contractor and other incentives cannot be used because contractor performance cannot be measured objectively. Such contracts shall
 - (1) Establish a fixed price (including normal profit) for the effort. This price will be paid for satisfactory contract performance. Award fee earned (if any) will be paid in addition to that fixed price; and
 - (2) Provide for periodic evaluation of the contractor's performance against an award-fee plan.
- (b) A solicitation contemplating award of a fixed-price contract with award fee shall not be issued unless the following conditions exist:
 - (1) The administrative costs of conducting award-fee evaluations are not expected to exceed the expected benefits;
 - (2) Procedures have been established for conducting the award-fee evaluation;
 - (3) The award-fee board has been established; and
 - (4) An individual above the level of the contracting officer approved the fixed-price-award-fee incentive.

Applying this approach to building mechanical systems O&M contracts, contractor initiated measures would be limited to those that

- require little or no capital investment,
- can recoup implementation costs over the remaining current term, and
- allow results to be verified or agreed upon by the government and the contractor.

Under this approach, the contractor bears the risk associated with recovering any investment and a portion of the savings.

The General Services Administration (GSA) has inserted into many of its mechanical services contracts a voluntary provision titled Energy Conservation Award Fee (ECAF), which allows contractors and sites to pursue such an approach for O&M savings incentives. The ECAF model language provides for the following:

An energy use baseline will be furnished upon request and be provided by the Government to the contractor. The baseline will show the 3-year rolling monthly average electric and natural gas use prior to contract award.

- The Government will calculate the monthly electric savings as the difference between the monthly energy bill and the corresponding baseline period.
- The ECAF will be calculated by multiplying the energy savings by the monthly average cost per kilowatt-hour of electricity.
- All other contract provisions must be satisfied to qualify for award.
- The Government can adjust the ECAF for operational factors affecting energy use such as fluctuations in occupant density, building use changes, and when major equipment is not operational.

Individual sites are able to adapt the model GSA language to best suit their needs (e.g., including natural gas savings incentives). Other agencies are free to adopt this approach as well since the provisions of the FAR apply across the federal government.

Energy savings opportunities will vary by building and by the structure of the contract incentives arrangement. Some questions to address when developing a site specific incentives plan are:

- Will metered data be required or can energy savings be stipulated?
- Are buildings metered individually for energy use or do multiple buildings share a master meter?
- Will the baseline be fixed for the duration of the contract or will the baseline reset during the contract period?
- What energy savings are eligible for performance incentives? Are water savings also eligible for performance incentives?
- What administrative process will be used to monitor work and determine savings? Note that
 overly rigorous submittal, approval, justification, and calculation processes will discourage
 contractor participation.

Since the contract incentives approach is best suited for low cost, quick payback measures, O&M contractors should consider recommissioning/value recommissioning actions as discussed in Chapter 7.

An added benefit from the contract incentives process is that resulting operations and energy efficiency improvements can be incorporated into the O&M services contract during the next contract renewal or re-competition since (a) the needed actions are now identified, and (b) the value of the actions is known to the government.

3.8.2 Model Contract Language

Contracts being re-competed offer an opportunity to replace dated and often ambiguous boilerplate maintenance contract clauses with model contract clauses that make use of current best practices including predictive maintenance technologies such as infrared thermography, ultrasonics, and vibration analysis. These increased and updated requirements will result in increased award fees as current boilerplate clauses tend to emphasize only a preventive maintenance approach.

Examples of model contract language in the federal facilities sector are difficult to locate. The National Aeronautics and Space Administration (NASA) has developed a series of Guide Performance Work Statements that allows for the incorporation of many of the current O&M best practices including the use of predictive testing and inspection. The NASA O&M contracting approach has

become more outcome-based with an emphasis on results and outcomes instead of relying on the traditional performance-based approach where work requirements are specified. The family of NASA documents for these performance based contracts is available at http://www.hq.nasa.gov/office/codej/codejx/jxdocuments.htm#mtdocs, under the section heading "NASA Guide Performance Work Statements (GPWS)":

- (NASA 1997a) The Guide Performance Work Statement for Center/Installation Operation Support Services, Section C, contains the complete (unedited) GPWS. Of particular interest are the following subsections:
 - o C.12, General Requirements and Procedures for Recurring Work,
 - o C.15, Heating, Ventilation, Air Conditioning, Refrigeration, and Compressed Air Systems Maintenance and Repair,
 - o C.16, High and Low Voltage Electrical Distribution Systems Maintenance and Repair,
 - o C.17, Central Heating Plant Generation and Distribution Systems Operation, Maintenance and Repair, and
 - o C.23, Potable and Industrial Water Systems Operation, Maintenance, and Repair.
- The User's Guide for Preparing Performance Guide Work Statements for Center Operations Support Services states that predictive testing and inspection is treated just like preventive maintenance in that it is performed and inspected on a regular basis (NASA 1997b).
- "Guide Performance Work Statement for Subsection 32 Energy/Water Conservation Management Services" calls for contractors to serve as the site energy and water conservation program managers. Included in this section are various O&M functions including meter reading, audits, utility bill verification, leak detection, EMCS operation and repair, and commissioning (NASA 1999).

3.9 References

Meador, R.J. 1995. Maintaining the Solution to Operations and Maintenance Efficiency Improvement. World Energy Engineering Congress, Atlanta, Georgia.

NASA. 1997a. Guide Performance Work Statement for Center/Installation Operations Support Services. National Aeronautics and Space Administration, Washington, D.C. Available URL: www.hq.nasa.gov/office/codej/codejx/Coss1-27.doc

NASA. 1997b. User's Guide for Preparing Performance Work Statements for Center Operations Support Services. National Aeronautics and Space Administration, Washington, D.C. Available URL: www.hq.nasa.gov/office/codej/codej/cossug.doc

NASA. 1999. Guide Performance Work Statement for Subsection 32 – Energy/Water Conservation Management Services. National Aeronautics and Space Administration, Washington, D.C. Available URL: www.hq.nasa.gov/office/codej/codej/codej/Add32-33.doc

PECI. 1997. Operations and Maintenance Service Contract. Portland Energy Conservation, Inc., Portland, Oregon.

Chapter 4 Computerized Maintenance Management System

4.1 Introduction

A computerized maintenance management system (CMMS) is a type of management software that performs functions in support of management and tracking of O&M activities.

4.2 CMMS Capabilities

CMMS systems automate most of the logistical functions performed by maintenance staff and management. CMMS systems come with many options and have many advantages over manual maintenance tracking systems. Depending on the complexity of the system chosen, typical CMMS functions may include the following:

- Work order generation, prioritization, and tracking by equipment/component.
- Historical tracking of all work orders generated which become sortable by equipment, date, person responding, etc.
- Tracking of scheduled and unscheduled maintenance activities.
- Storing of maintenance procedures as well as all warranty information by component.
- Storing of all technical documentation or procedures by component.
- Real-time reports of ongoing work activity.
- Calendar- or run-time-based preventive maintenance work order generation.
- Capital and labor cost tracking by component as well as shortest, median, and longest times to close a work order by component.
- Complete parts and materials inventory control with automated reorder capability.
- PDA interface to streamline input and work order generation.
- Outside service call/dispatch capabilities.

Many CMMS programs can now interface with existing energy management and control systems (EMCS) as well as property management systems. Coupling these capabilities allows for condition-based monitoring and component energy use profiles.

While CMMS can go a long way toward automating and improving the efficiency of most O&M programs, there are some common pitfalls. These include the following:

- **Improper selection of a CMMS vendor**. This is a site-specific decision. Time should be taken to evaluate initial needs and look for the proper match of system and service provider.
- Inadequate training of the O&M administrative staff on proper use of the CMMS. These staff need dedicated training on input, function, and maintenance of the CMMS. Typically, this training takes place at the customer's site after the system has been installed.

- Lack of commitment to properly implement the CMMS. A commitment needs to be in place for the start up/implementation of the CMMS. Most vendors provide this as a service and it is usually worth the expense.
- Lack of commitment to persist in CMMS use and integration. While CMMS provides significant advantages, they need to be maintained. Most successful CMMS installations have a "champion" of its use who ushers and encourages its continued use.

4.3 CMMS Benefits

One of the greatest benefits of the CMMS is the elimination of paperwork and manual tracking activities, thus enabling the building staff to become more productive. It should be noted that the functionality of a CMMS lies in its ability to collect and store information in an easily retrievable format. A CMMS does not make decisions, rather it provides the O&M manager with the best information to affect the *operational efficiency* of a facility.

Benefits to implement a CMMS include the following:

- Detection of impending problems before a failure occurs resulting in fewer failures and customer complaints.
- Achieving a higher level of planned maintenance activities that enables a more efficient use of staff resources.
- Affecting inventory control enabling better spare parts forecasting to eliminate shortages and minimize existing inventory.
- Maintaining optimal equipment performance that reduces downtime and results in longer equipment life.

As reported in A.T. Kearney's and *Industry Week's* survey of 558 companies that are currently using a computerized maintenance management system (DPSI 1994), companies reported an average of:

28.3% increase in maintenance productivity 20.1% reduction in equipment downtime 19.4% savings in lower material costs 17.8% reduction in MRO inventory 14.5 months average payback time.

4.4 Reference

DPSI. 1994. Uptime for Windows Product Guide, Version 2.1. DPSI, Greensboro, North Carolina.

Chapter 5 Types of Maintenance Programs

5.1 Introduction

What is maintenance and why is it performed? Past and current maintenance practices in both the private and Government sectors would imply that maintenance is the actions associated with equipment repair after it is broken. The dictionary defines maintenance as follows: "the work of keeping something in proper condition; upkeep." This would imply that maintenance should be actions taken to prevent a device or component from failing or to repair normal equipment degradation experienced with the operation of the device to keep it in proper working order. Unfortunately, data obtained in many studies over the past decade indicates that most private and Government facilities do not expend the necessary resources to maintain equipment in proper working order. Rather, they wait for equipment failure to occur and then take whatever actions are necessary to repair or replace the equipment. Nothing lasts forever and all equipment has associated with it some predefined life expectancy or operational life. For example, equipment may be designed to operate at full design load for 5,000 hours and may be designed to go through 15,000 start and stop cycles.

The design life of most equipment requires periodic maintenance. Belts need adjustment, alignment needs to be maintained, proper lubrication on rotating equipment is required, and so on. In some cases, certain components need replacement, e.g., a wheel bearing on a motor vehicle, to ensure the main piece of equipment (in this case a car) last for its design life. Anytime we fail to perform maintenance activities intended by the equipment's designer, we shorten the operating life of the equipment. But what options do we have? Over the last 30 years, different approaches to how maintenance can be performed to ensure equipment reaches or exceeds its design life have been developed in the United States. In addition to waiting for a piece of equipment to fail (reactive maintenance), we can utilize preventive maintenance, predictive maintenance, or reliability centered maintenance.

5.2 Reactive Maintenance

Reactive maintenance is basically the "run it till it breaks" maintenance mode. No actions or efforts are taken to maintain the equipment as the designer originally intended to ensure design life is reached. Studies as recent as the winter of 2000 indicate this is still the predominant mode of maintenance in the United States. The referenced study breaks down the average maintenance program as follows:

- >55% Reactive
- 31% Preventive
- 12% Predictive
- 2% Other.

Note that more than 55% of maintenance resources and activities of an average facility are still reactive.

Advantages to reactive maintenance can be viewed as a double-edged sword. If we are dealing with new equipment, we can expect minimal incidents of failure. If our maintenance program is purely reactive, we will not expend manpower dollars or incur capitol cost until something breaks.

Advantages

- Low cost.
- Less staff.

Disadvantages

- Increased cost due to unplanned downtime of equipment.
- Increased labor cost, especially if overtime is needed.
- Cost involved with repair or replacement of equipment.
- Possible secondary equipment or process damage from equipment failure.
- Inefficient use of staff resources.

Since we do not see any associated maintenance cost, we could view this period as saving money. The downside is reality. In reality, during the time we believe we are saving maintenance and capitol cost, we are really spending more dollars than we would have under a different maintenance approach. We are spending more dollars associated with capitol cost because, while waiting for the equipment to break, we are shortening the life of the equipment resulting in more frequent replacement. We may incur cost upon failure of the primary device associated with its failure causing the failure of a secondary device. This is an increased cost we would not have experienced if our maintenance program was more pro-

active. Our labor cost associated with repair will probably be higher than normal because the failure will most likely require more extensive repairs than would have been required if the piece of equipment had not been run to failure. Chances are the piece of equipment will fail during off hours or close to the end of the normal workday. If it is a critical piece of equipment that needs to be back on-line quickly, we will have to pay maintenance overtime cost. Since we expect to run equipment to failure, we will require a large material inventory of repair parts. This is a cost we could minimize under a different maintenance strategy.

5.3 Preventive Maintenance

Preventive maintenance can be defined as follows: Actions performed on a time- or machine-run-based schedule that detect, preclude, or mitigate degradation of a component or system with the aim of sustaining or extending its useful life through controlling degradation to an acceptable level.

The U.S. Navy pioneered preventive maintenance as a means to increase the reliability of their vessels. By simply expending the necessary resources to conduct maintenance activities intended by the equipment designer, equipment life is extended and its reliability is increased. In addition to an increase in reliability, dollars are saved over that of a program just using reactive maintenance. Studies indicate that this savings can amount to as much as 12% to 18% on the average.

Advantages

- Cost effective in many capital intensive processes.
- Flexibility allows for the adjustment of maintenance periodicity.
- Increased component life cycle.
- Energy savings.
- Reduced equipment or process failure.
- Estimated 12% to 18% cost savings over reactive maintenance program.

Disadvantages

- Catastrophic failures still likely to occur.
- Labor intensive.
- Includes performance of unneeded maintenance.
- Potential for incidental damage to components in conducting unneeded maintenance.

Depending on the facilities current maintenance practices, present equipment reliability, and facility downtime, there is little doubt that many facilities purely reliant on reactive maintenance could save much more than 18% by instituting a proper preventive maintenance program.

While preventive maintenance is not the optimum maintenance program, it does have several advantages over that of a purely reactive program. By performing the preventive maintenance as the equipment designer envisioned, we will extend the life of the equipment closer to design. This translates into dollar savings. Preventive maintenance (lubrication, filter change, etc.) will generally run the equipment more efficiently resulting in dollar savings. While we will not prevent equipment catastrophic failures, we will decrease the number of failures. Minimizing failures translate into maintenance and capitol cost savings.

5.4 Predictive Maintenance

Predictive maintenance can be defined as follows: Measurements that detect the onset of a degradation mechanism, thereby allowing causal stressors to be eliminated or controlled prior to any significant deterioration in the component physical state. Results indicate current and future functional capability.

Basically, predictive maintenance differs from preventive maintenance by basing maintenance need on the actual condition of the machine rather than on some preset schedule. You will recall that preventive maintenance is time-based. Activities such as changing lubricant are based on time, like calendar time or equipment run time. For example, most people change the oil in their vehicles every 3,000 to 5,000 miles traveled. This is effectively basing the oil change needs on equipment run time. No concern is given to the actual condition and performance capability of the oil. It is changed because it is time. This methodology would be analogous to a preventive maintenance task. If, on the other hand, the operator of the car discounted the vehicle run time and had the oil analyzed at some periodicity to determine its actual condi-

Advantages

- Increased component operational life/availability.
- Allows for preemptive corrective actions.
- Decrease in equipment or process downtime.
- Decrease in costs for parts and labor.
- Better product quality.
- Improved worker and environmental safety.
- Improved worker moral.
- Energy savings.
- Estimated 8% to 12% cost savings over preventive maintenance program.

Disadvantages

- Increased investment in diagnostic equipment.
- Increased investment in staff training.
- Savings potential not readily seen by management.

tion and lubrication properties, he/she may be able to extend the oil change until the vehicle had traveled 10,000 miles. This is the fundamental difference between predictive maintenance and preventive maintenance, whereby predictive maintenance is used to define needed maintenance task based on quantified material/equipment condition.

The advantages of predictive maintenance are many. A well-orchestrated predictive maintenance program will all but eliminate catastrophic equipment failures. We will be able to schedule maintenance activities to minimize or delete overtime cost. We will be able to minimize inventory and order parts, as required, well ahead of time to support the downstream maintenance needs. We can optimize the operation of the equipment, saving energy cost and increasing plant reliability. Past

studies have estimated that a properly functioning predictive maintenance program can provide a savings of 8% to 12% over a program utilizing preventive maintenance alone. Depending on a facility's reliance on reactive maintenance and material condition, it could easily recognize savings opportunities exceeding 30% to 40%. In fact, independent surveys indicate the following industrial average savings resultant from initiation of a functional predictive maintenance program:

• Return on investment: 10 times

• Reduction in maintenance costs: 25% to 30%

• Elimination of breakdowns: 70% to 75%

• Reduction in downtime: 35% to 45%

• Increase in production: 20% to 25%.

On the down side, to initially start into the predictive maintenance world is not inexpensive. Much of the equipment requires cost in excess of \$50,000. Training of in-plant personnel to effectively utilize predictive maintenance technologies will require considerable funding. Program development will require an understanding of predictive maintenance and a firm commitment to make the program work by all facility organizations and management.

5.5 Reliability Centered Maintenance

Reliability centered maintenance (RCM) magazine provides the following definition of RCM: "a process used to determine the maintenance requirements of any physical asset in its operating context."

Basically, RCM methodology deals with some key issues not dealt with by other maintenance programs. It recognizes that all equipment in a facility is not of equal importance to either the process or facility safety. It recognizes that equipment design and operation differs and that different equipment

Advantages

- Can be the most efficient maintenance program.
- Lower costs by eliminating unnecessary maintenance or overhauls.
- Minimize frequency of overhauls.
- Reduced probability of sudden equipment failures.
- Able to focus maintenance activities on critical components.
- Increased component reliability.
- Incorporates root cause analysis.

Disadvantages

- Can have significant startup cost, training, equipment, etc.
- Savings potential not readily seen by management.

will have a higher probability to undergo failures from different degradation mechanisms than others. It also approaches the structuring of a maintenance program recognizing that a facility does not have unlimited financial and personnel resources and that the use of both need to be prioritized and optimized. In a nutshell, RCM is a systematic approach to evaluate a facility's equipment and resources to best mate the two and result in a high degree of facility reliability and cost-effectiveness. RCM is highly reliant on predictive maintenance but also recognizes that maintenance activities on equipment that is inexpensive and unimportant to facility reliability may best be left to a reactive maintenance approach. The following maintenance program breakdowns of

continually top-performing facilities would echo the RCM approach to utilize all available maintenance approaches with the predominant methodology being predictive.

- <10% Reactive
- 25% to 35% Preventive
- 45% to 55% Predictive.

Because RCM is so heavily weighted in utilization of predictive maintenance technologies, its program advantages and disadvantages mirror those of predictive maintenance. In addition to these advantages, RCM will allow a facility to more closely match resources to needs while improving reliability and decreasing cost.

5.6 How to Initiate Reliability Centered Maintenance

The road from a purely reactive program to a RCM program is not an easy one. The following is a list of some basic steps that will help to get moving down this path.

- 1. Develop a Master equipment list identifying the equipment in your facility.
- 2. Prioritize the listed components based on importance to process.
- 3. Assign components into logical groupings.
- 4. Determine the type and number of maintenance activities required and periodicity using:
 - a. Manufacturer technical manuals
 - b. Machinery history
 - c. Root cause analysis findings Why did it fail?
 - d. Good engineering judgment
- 5. Assess the size of maintenance staff.
- 6. Identify tasks that may be performed by operations maintenance personnel.
- 7. Analyze equipment failure modes and effects.
- 8. Identify effective maintenance tasks or mitigation strategies.

The references and resources provided below are by no means all-inclusive. The listed organizations are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

An Introduction to Reliability and Maintainability Engineering

By: Charles E. Ebeling

Published by: McGraw Hill College Division

Publication date: September 1996

Maintenance Engineering Handbook

By: Lindley R. Higgins, Dale P. Brautigam, and R. Keith Mobley (Editor)

Published by: McGraw Hill Text, 5th Edition

Publication date: September 1994

Condition-Based Maintenance and Machine Diagnostics

By: John H. Williams, Alan Davies, and Paul R. Drake

Published by: Chapman & Hall Publication date: October 1994

Maintenance Planning and Scheduling Handbook

By: Richard D. (Doc) Palmer Published by: McGraw Hill Publication date: March 29, 1999

Maintainability and Maintenance Management

By: Joseph D. Patton, Jr.

Published by: Instrument Society of America, 3rd Revision

Publication date: February 1994

Reliability-Centered Maintenance

By: John Moubray

Published by: Industrial Press, 2nd Edition

Publication date: April 1997

Reliability-Centered Maintenance

By: Anthony M. Smith Published by: McGraw Hill Publication date: September 1992.

Case Study Comparison of Four Maintenance Programs (Piotrowski 2001)

Reactive Maintenance (Breakdown or Run-to-Failure Maintenance)

Basic philosophy

- Allow machinery to run to failure.
- Repair or replace damaged equipment when obvious problems occur.

Cost: \$18/hp/yr

This maintenance philosophy allows machinery to run to failure, providing for the repair or replacement of damaged equipment only when obvious problems occur. Studies have shown that the costs to operate in this fashion are about \$18 per horsepower (hp) per year. The advantages of this approach are that it works well if equipment shutdowns do not affect production and if labor and material costs do not matter.

Preventive Maintenance (Time-Based Maintenance)

Basic philosophy

- Schedule maintenance activities at predetermined time intervals.
- Repair or replace damaged equipment before obvious problems occur.

Cost: \$13/hp/yr

This philosophy entails the scheduling of maintenance activities at predetermined time intervals, where damaged equipment is repaired or replaced before obvious problems occur. When it is done correctly, studies have shown the costs of operating in this fashion to be about \$13 per hp per year. The advantages of this approach are that it works well for equipment that does not run continuously, and with personnel who have enough knowledge, skills, and time to perform the preventive maintenance work.

Predictive Maintenance (Condition-Based Maintenance)

Basic philosophy

- Schedule maintenance activities when mechanical or operational conditions warrant.
- Repair or replace damaged equipment before obvious problems occur.

Cost: \$9/hp/yr

This philosophy consists of scheduling maintenance activities only if and when mechanical or operational conditions warrant-by periodically monitoring the machinery for excessive vibration, temperature and/or lubrication degradation, or by observing any other unhealthy trends that occur over time. When the condition gets to a predetermined unacceptable level, the equipment is shut down to repair or replace damaged components so as to prevent a more costly failure from occurring. In other words, "Don't fix what is not broke." Studies have shown that when it is done correctly, the costs to operate in this fashion are about \$9 per hp per year. Advantages of this approach are that it works very well if personnel have adequate knowledge, skills, and time to perform the predictive maintenance work, and that it allows equipment repairs to be scheduled in an orderly fashion. It also provides some lead-time to purchase materials for the necessary repairs, reducing the need for a high parts inventory. Since maintenance work is only performed when it is needed, there is likely to be an increase in production capacity.

Reliability Centered Maintenance (Pro-Active or Prevention Maintenance)

Basic philosophy

Utilizes predictive/preventive maintenance techniques with root cause failure analysis to detect
and pinpoint the precise problems, combined with advanced installation and repair techniques,
including potential equipment redesign or modification to avoid or eliminate problems from
occurring.

Cost: \$6/hp/yr

This philosophy utilizes all of the previously discussed predictive/preventive maintenance techniques, in concert with root cause failure analysis. This not only detects and pinpoints precise problems that occur, but ensures that advanced installation and repair techniques are performed, including potential equipment redesign or modification, thus helping to avoid problems or keep them from occurring. According to studies, when it is done correctly, operating in this fashion costs about \$6 per hp per year. One advantage to this approach is that it works extremely well if personnel have the knowledge, skills, and time to perform all of the required activities. As with the predictive-based program, equipment repairs can be scheduled in an orderly fashion, but additional improvement efforts also can be undertaken to reduce or eliminate potential problems from repeatedly occurring. Furthermore, it allows lead-time to purchase materials for necessary repairs, thus reducing the need for a high parts inventory. Since maintenance work is performed only when it is needed, and extra efforts are put forth to thoroughly investigate the cause of the failure and determine ways to improve machinery reliability, there can be a substantial increase in production capacity.

5.7 Reference

Piotrowski, J. April 2, 2001. *Pro-Active Maintenance for Pumps, Archives, February 2001*, Pump-Zone.com [Report online]. Available URL: http://www.pump-zone.com. Reprinted with permission of Pump-Zone.com.

Chapter 6 Predictive Maintenance Technologies

6.1 Introduction

Predictive maintenance attempts to detect the onset of a degradation mechanism with the goal of correcting that degradation prior to significant deterioration in the component or equipment. The diagnostic capabilities of predictive maintenance technologies have increased in recent years with advances made in sensor technologies. These advances, breakthroughs in component sensitivities, size reductions, and most importantly, cost, have opened up an entirely new area of diagnostics to the O&M practitioner.

As with the introduction of any new technology, proper application and **TRAINING** is of critical importance. This need is particularly true in the field of predictive maintenance technology that has become increasingly sophisticated and technology-driven. Most industry experts would agree (as well as most reputable equipment vendors) that this equipment should not be purchased for in-house use if there is not a serious commitment to proper implementation, operator training, and equipment monitoring and repair. If such a commitment cannot be made, a site is well advised to seek other methods of program implementation—a preferable option may be to contract for these services with an outside vendor and rely on their equipment and expertise.

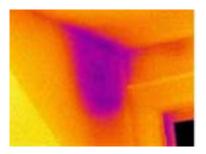
6.2 Thermography

6.2.1 Introduction

Infrared (IR) thermography can be defined as the process of generating visual images that represent variations in IR radiance of surfaces of objects. Similar to the way objects of different materials and colors absorb and reflect electromagnetic radiation in the visible light spectrum (0.4 to 0.7 microns), any object at temperatures greater than absolute zero emits IR energy (radiation) proportional to its existing temperature. The IR radiation spectrum is generally agreed to exist between 2.0 and 15 microns. By using an instrument that contains detectors sensitive to IR electromagnetic radiation, a two-dimensional visual image reflective of the IR radiance from the surface of an object can be generated. Even though the detectors and electronics are different, the process itself is similar to that a video camera uses to detect a scene reflecting electromagnetic energy in the visible light spectrum, interpreting that information, and displaying what it detects on a liquid crystal display (LCD) screen that can then be viewed by the device operator.

Because IR radiation falls outside that of visible light (the radiation spectrum to which our eyes are sensitive), it is invisible to the naked eye. An IR camera or similar device allows us to escape the visible light spectrum and view an object based on its temperature and its proportional emittance of IR radiation. How and why is this ability to detect and visualize an object's temperature profile important in maintaining systems or components? Like all predictive maintenance technologies, IR tries to detect the presence of conditions or stressors that act to decrease a component's useful or design life. Many of these conditions result in changes to a component's temperature. For example, a loose or corroded electrical connection results in abnormally elevated connection temperatures due to increased electrical resistance. Before the connection is hot enough to result in equipment failure or possible fire, the patterns are easily seen through an IR imaging camera, the condition identified and corrected. Rotating equipment problems will normally result in some form of frictional change that will be seen as an increase in the component's temperature. Faulty or complete loss of refractory material will be readily seen as a change in the components thermal profile. Loss of a roof's membrane integrity will result in moisture that can be readily detected as differences in the roof thermal profile. These are just a few general examples of the hundreds of possible applications of this technology and how it might be used to detect problems that would otherwise go unnoticed until a component failed and resulted in excessive repair or downtime cost.

6.2.2 Types of Equipment


Many types of IR detection devices exist, varying in capability, design, and cost. In addition, simple temperature measurement devices that detect IR emissions but do not produce a visual image or IR profile are also manufactured. The following text and pictures provide an overview of each general instrument type.

Spot Radiometer (Infrared Thermometer) – Although not generally thought of in the world of thermography, IR thermometers use the same basic principles as higher end equipment to define an object's temperature based on IR emissions. These devices do not provide any image representative of an object's thermal profile, but rather a value representative of the temperature of the object or area of interest.

Figure 6.2.1. Typical IR spot thermometer.

Infrared Imager - As indicated earlier, equipment capabilities, design, cost, and functionality vary greatly. Differences exist in IR detector material, operation, and design. At the fundamental level, IR detection devices can be broken down into two main groups – imagers and cameras with radiometric capability. A simple IR imager has the ability to detect an object's IR emissions and translate this information into a visual image. It does not have the capability to analyze and quantify specific temperature values. This type of IR detection device can be of use when temperature values are unimportant and the object's temperature profile (represented by the image) is all that is needed to define a problem. An example of such an application would be in detecting missing or inadequate

Figure 6.2.2. Internal house wall. Note dark area indicating cooler temperatures because of heat loss.

insulation in a structure's envelope. Such an application merely requires an image representative of the differences in the thermal profile due to absence of adequate insulation. Exact temperature values are unimportant.

IR cameras with full radiometric capability detect the IR emissions from an object and translate this information into a visible format as in the case of an imager. In addition, these devices have the capability to analyze the image and provide a temperature value corresponding to the area of interest. This capability is useful in applications where a temperature value is important in defining a problem or condition. For example, if an image indicated a difference between a pulley belt temperature and an ambient temperature, the belt may have worn, be the wrong size, or indicate a misalignment condition. Knowing the approximate temperature differences would be important in determining if a problem existed.

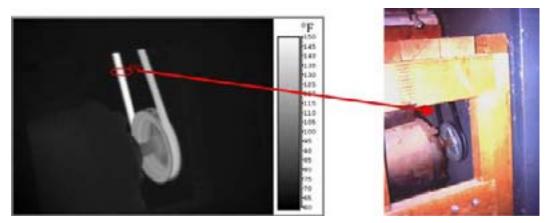
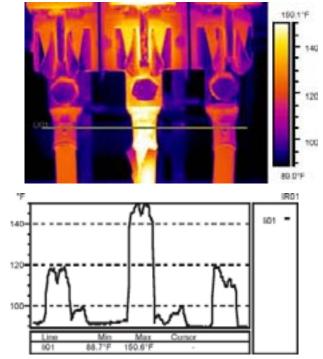
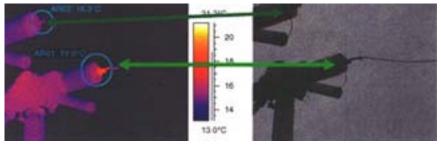


Figure 6.2.3. Temperature is used in defining belt problems. Belt temperature – 149 degrees Ambient temperature – 67 degrees Difference between belt temperature – 82 degrees

6.2.3 System Applications


6.2.3.1 Electrical System Applications

The primary value of thermographic inspections of electrical systems is locating problems so that they can be diagnosed and repaired. "How hot is it?" is usually of far less importance. Once the

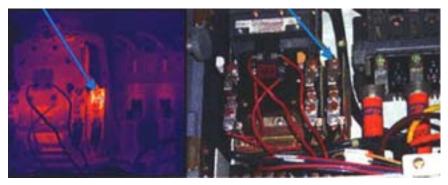

problem is located, thermography and other test methods, as well as experience and common sense, are used to diagnose the nature of the problem. The following list contains just a few of the possible electrical system-related survey applications:

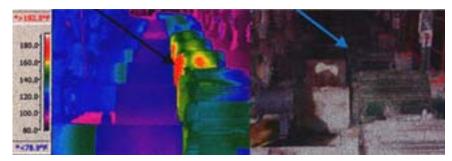
- Transmission lines
 - Splices
 - Shoes/end bells
 - Inductive heating problems
 - Insulators
 - Cracked or damaged/tracking
- Distribution lines/systems
 - Splices
 - Line clamps
 - Disconnects
 - Oil switches/breakers
 - Capacitors
 - Pole-mounted transformers
 - Lightning arrestors
 - Imbalances
- Substations
 - Disconnects, cutouts, air switches
 - Oil-filled switches/breakers (external and internal faults)
 - Capacitors
 - Transformers
 - Internal problems
 - Bushings

- Oil levels
- Cooling tubes
- Lightning arrestors
- Bus connections
- Generator Facilities
 - Generator
 - Bearings
 - Brushes
 - Windings
 - Coolant/oil lines: blockage
 - Motors
 - Connections
 - Bearings
 - Winding/cooling patterns
 - Motor Control Center
 - Imbalances
- In-Plant Electrical Systems
 - Switchgear
 - Motor Control Center
 - Bus
 - Cable trays
 - Batteries and charging circuits
 - Power/Lighting distribution panels

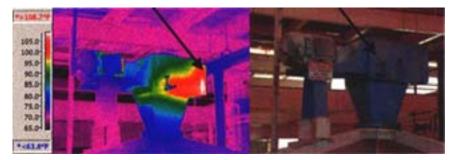
Software analysis tools can quantify and graphically display temperature data.

Figure 6.2.4. Air breaker problem. Note temperature difference between these air breaker contacts seen inside green circles.

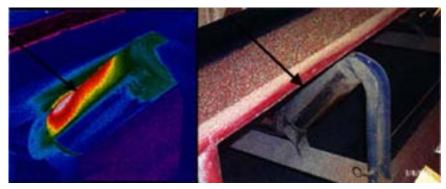



Figure 6.2.5. Overload connection problem. Note difference in IR image coloration between overload contacts.

6.2.3.2 Mechanical System Applications


Rotating equipment applications are only a small subset of the possible areas where thermography can be used in a mechanical predictive maintenance program. In addition to the ability to detect problems associated with bearing failure, alignment, balance, and looseness, thermography can be used to define many temperature profiles indicative of equipment operational faults or failure. The following list provides a few application examples and is not all inclusive:

- Steam Systems
 - Boilers
 - Refractory
 - Tubes
 - Traps
 - Valves
 - Lines
- Heaters and furnaces
 - Refractory inspections
 - Tube restrictions
- Fluids
 - Vessel levels
 - Pipeline blockages


- Environmental
 - Water discharge patterns
 - Air discharge patterns
- Motors and rotating equipment
 - Bearings
 - Mechanical failure
 - Improper lubrication
 - Coupling and alignment problems
 - Electrical connections on motors
 - Air cooling of motors

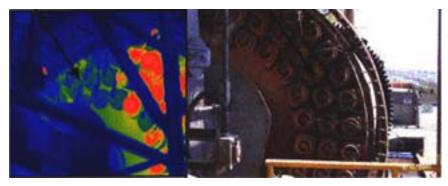
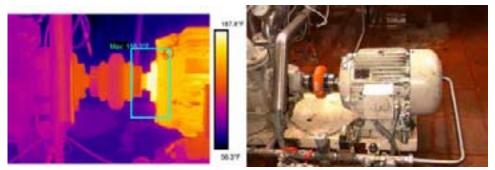
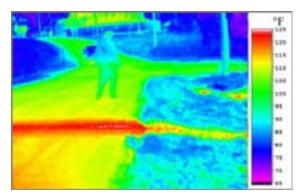
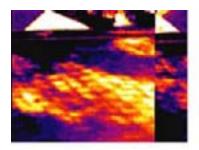

Figure 6.2.6. Warm inboard motor bearing. Image taken in a manner to readily compare IR images of several running motors.

Figure 6.2.7. Possible gearbox problem indicated by white area defined by arrow. Design drawings of gearbox should be examined to define possible cause of elevated temperatures.


Figure 6.2.8. Seized conveyer belt roller as indicated by elevated temperatures in belt/roller contact area.


Figure 6.2.9. Inoperable steam heaters seen by cooler blue areas when compared to the operating heaters warmer red or orange colors.


Figure 6.2.10. Refractory breakdown readily seen by white area in IR image.

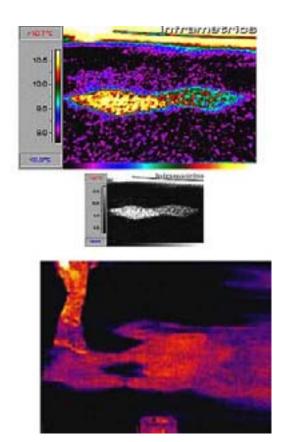

Figure 6.2.11. IR is a useful predictive technology in defining bearing problems as indicated in this IR image.

Figure 6.2.12. Steam or hot water distribution system leaks and/or underground line location can be defined with IR.

These images show elevated temperatures of roof insulation due to difference in thermal capacitance of moisture-laden insulation.

6.2.3.3 Roof Thermography

Out of sight, out of mind. This old adage is particularly true when it applies to flat roof maintenance. We generally forget about the roof until it leaks on our computers, switchgear, tables, etc. Roof replacement can be very expensive and at a standard industrial complex easily run into the hundreds of thousands of dollars. Depending on construction, length of time the roof has leaked, etc., actual building structural components can be damaged from inleakage and years of neglect that drive up repair cost further. Utilization of thermography to detect loss of a flat roof's membrane integrity is an application that can provide substantial return by minimizing area of repair/replacement. Roof reconditioning cost can be expected to run less than half of new roof cost per square foot. Add to this the savings to be gained from reconditioning a small percentage of the total roof surface, instead of replacement of the total roof, and the savings can easily pay for roof surveys and occasional repair for the life of the building with change left over.

6.2.4 Equipment Cost/Payback

As indicated earlier, the cost of thermography equipment varies widely depending on the capabilities of the equipment. A simple spot radiometer can cost from \$500 to \$2,500. An IR imager without radiometric capability can range from \$7,000 to \$20,000. A camera with full functionality can cost from \$18,000 to \$65,000. Besides the camera hardware, other program costs are involved.

Computer hardware, personnel training, manpower, etc., needs to be accounted for in the budget. Below is a listing of equipment and program needs recommended by a company recognized as a leader in the world of IR program development:

- Level I thermographic training
- Level II thermographic training
- Ongoing professional development
- IR camera and accessories
- Report software
- Laptop computer
- Color printer
- Digital visual camera
- Personal Protective Equipment (PPE) for arc flash protection

Payback can vary widely depending on the type of facility and use of the equipment. A production facility whose downtime equates to several thousands of dollars per hour can realize savings much faster than a small facility with minimal roof area, electrical distribution network, etc. On the average, a facility can expect a payback in 12 months or less. A small facility may consider using the services of an IR survey contractor. Such services are widely available and costs range from \$600 to \$1,200 per day. Contracted services are generally the most cost-effective approach for smaller, less maintenance-intensive facilities.

6.2.5 Case Studies

IR Diagnostics of Pump

A facility was having continual problems with some to its motor and pump combinations. Pump bearings repeatedly failed. An IR inspection confirmed that the lower thrust bearing was warmer than the other bearing in the pump. Further investigation revealed that the motor-pump combination was designed to operate in the horizontal position. In order to save floor space, the pump was mounted vertically below the motor. As a result, the lower thrust bearing was overloaded leading to premature failure. The failures resulted in a \$15,000 repair cost, not including lost production time (\$30,000 per minute production loss and in excess of \$600 per minute labor).

IR Diagnostics of Steam Traps

Steam trap failure detection can be difficult by other forms of detection in many hard to reach and inconvenient places. Without a good trap maintenance program, it can be expected that 15% to 60% of a facility's traps will be failed open. At \$3/1,000 lb (very conservative), a 1/4-in. orifice trap failed open will cost approximately \$7,800 per year. If the system had 100 traps and 20% were failed, the loss would be in excess of \$156,000. An oil refinery identified 14% of its traps were malfunctioning and realized a savings of \$600,000 a year after repair.

IR Diagnostics of Roof

A state agency in the northeast operated a facility with a 360,000 square foot roof area. The roof was over 22 years old and experiencing several leaks. Cost estimates to replace the roof ranged between \$2.5 and \$3 million. An initial IR inspection identified 1,208 square feet of roof requiring replacement at a total cost of \$20,705. The following year another IR inspection was performed that found 1,399 square feet of roof requiring replacement at a cost of \$18,217. A roof IR inspection program was started and the roof surveyed each year. The survey resulted in less than 200 square feet of roof identified needing replacement in any one of the following 4 years (one year results were as low as 30 square feet). The total cost for roof repair and upkeep for the 6 years was less than \$60,000. If the facility would have been privately owned, interest on the initial \$3 million at 10% would have amounted to \$300,000 for the first year alone. Discounting interest on \$3 million over the 5-year period, simple savings resulting from survey and repair versus initial replacement cost (\$3 million to \$60,000) amount to \$2,940,000. This figure does not take into account interest on the \$3 million, which would result in savings in excess of another \$500,000 to \$800,000, depending on loan interest paid.

6.2.6 References/Resources

The references and resources provided below are by no means all-inclusive. The listed organizations are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

FLIR Systems

Boston, MA

Telephone: 1-800-464-6372

Web address: www.flirthermography.com

Infrared Solutions, Inc.

Plymouth, MN

Telephone: (763) 551-0003 or 1-800-760-4523

6.2.6.1 Infrared Service Companies

Web address: www.infrasol.com

Mikron Instrument Company, Inc.

Oakland, NJ

Telephone: 1-800-631-0176 Web address: www.irimaging.com

Cooper Electric

3883 Virginia Avenue Cincinnati, OH 46227 Telephone: (513) 271-5000

Fax: (513) 527-3246

Web address: www.cooper-electric.net

Raytek

Santa Cruz, CA

Telephone: 1-800-866-5478

Web address: www.raytek-northamerica.com

Electrophysics

Fairfield, NJ

Telephone: (973) 882-0211

Web address: www.electrophysics.com

Raytheon Infrared

Telephone: 1-800-990-3275

Web address: www.raytheoninfrared.com

Fox Systems, Inc.

1771 US Hwy 41 SW P.O. Box 1777 Calhoun, GA 30703

Telephone: (706) 625-5520 or

(877) 727-2717

Web address: www.foxsystemsinc.com

Hartford Steam Boiler

Engineering Services Telephone: (703) 739-0350

Web address: www.hsb.com/infrared/

American Thermal Imaging

Red Wing, MN

Telephone: (877) 385-0051

Web address: www.americanthermalimaging.com

Infrared Services, Inc.

5899 S. Broadway Blvd. Littleton, CO 80121 Voice: (303) 734-1746

Web address: www.infrared-thermography.com

Snell Thermal Inspections

U.S. wide

Telephone: 1-800-636-9820 or (816) 623-9233 Web address: www.snellinspections.com

6.2.6.2 Infrared Internet Resource Sites

Academy of Infrared Thermography (www.infraredtraining.net)

- Level I, II, and III certification information and training schedule
- Online store (books, software, videos)
- Online resources (links, image gallery, message board)
- Communication (classifieds, news, industry related information
- Company profile and contact information

Snell Infrared (Snellinfrared.com)

- Training and course information
- Industry links
- IR library
- Newsletter
- Classifieds
- IR application information

6.3 Oil Analysis

6.3.1 Introduction

One of the oldest predictive maintenance technologies still in use today is that of oil analysis. Oil analysis is used to define three basic machine conditions related to the machine's lubrication or lubrication system. First is the condition of the oil, i.e., will its current condition lubricate per design? Testing is performed to determine lubricant viscosity, acidity, etc., as well as other chemical analysis to quantify the condition of oil additives like corrosion inhibitors. Second is the lubrication system condition, i.e., have any physical boundaries been violated causing lubricant contamination? By testing for water content, silicon, or other contaminants (depending on the system design), lubrication system integrity can be evaluated. Third is the machine condition itself. By analyzing wear particles existing in the lubricant, machine wear can be evaluated and quantified.

In addition to system degradation, oil analysis performed and trended over time can provide indication of improperly performed maintenance or operational practices. Introduction of contamination during lubricant change-out, improper system flush-out after repairs, addition of improper lubricant, and improper equipment operation are all conditions that have been found by the trending and evaluation of oil analysis data.

Several companies provide oil analysis services. These services are relatively inexpensive and some analysis laboratories can provide analysis results within 24 hours. Some services are currently using the Internet to provide quick and easy access to the analysis reports. Analysis equipment is also available should a facility wish to establish its own oil analysis laboratory. Regardless of whether the analysis is performed by an independent laboratory or by in-house forces, accurate results require proper sampling techniques. Samples should be taken from an active, low-pressure line, ahead of any filtration devices. For consistent results and accurate trending, samples should be taken from the same place in the system each time (using a permanently installed sample valve is highly recommended). Most independent laboratories supply sample containers, labels, and mailing cartons. If the oil analysis is to be done by a laboratory, all that is required is to take the sample, fill in information such as the machine number, machine type, and sample date, and send it to the laboratory. If the analysis is to be done on-site, analytical equipment must be purchased, installed, and standardized. Sample containers must be purchased, and a sample information form created and printed.

The most common oil analysis tests are used to determine the condition of the lubricant, excessive wearing of oil-wetted parts, and the presence of contamination. Oil condition is most easily determined by measuring viscosity, acid number, and base number. Additional tests can determine the presence and/or effectiveness of oil additives such as anti-wear additives, antioxidants, corrosion inhibitors, and anti-foam agents. Component wear can be determined by measuring the amount of wear metals such as iron, copper, chromium, aluminum, lead, tin, and nickel. Increases in specific wear metals can mean a particular part is wearing, or wear is taking place in a particular part of the machine. Contamination is determined by measuring water content, specific gravity, and the level of silicon. Often, changes in specific gravity mean that the fluid or lubricant has been contaminated with another type of oil or fuel. The presence of silicon (usually from sand) is an indication of contamination from dirt.

6.3.2 Test Types

• Karl Fischer Water Test – The Karl Fischer Test quantifies the amount of water in the lubricant.

Significance: Water seriously damages the lubricating properties of oil and promotes component corrosion. Increased water concentrations indicate possible condensation, coolant leaks, or process leaks around the seals.

• **ICP Spectroscopy** – Measures the concentration of wear metals, contaminant metals, and additive metals in a lubricant.

Significance: Measures and quantifies the elements associated with wear, contamination, and additives. This information assists decision makers in determining the oil and machine condition.

The following guide identifies the types of elements that may be identified by this test procedure as well as provides a brief description explaining where the metal comes from for engines, transmissions, gears, and hydraulics.

Spectrometer Metals Guide							
Metal	Engines	Transmissions	Gears	Hydraulics			
Iron	Cylinder liners, rings, gears, crankshaft, camshaft, valve train, oil pump gear, wrist pins	Gears, disks, housing, bearings, brake bands, shaft	Gears, bearings, shaft, housing	Rods, cylinders, gears			
Chrome	Rings, liners, exhaust valves, shaft plating, stainless steel alloy	Roller bearings	Roller bearings	Shaft			
Aluminum	Pistons, thrust bearings, turbo bearings, main bearings (cat)	Pumps, thrust washers	Pumps, thrust washers	Bearings, thrust plates			
Nickel	Valve plating, steel alloy from crankshaft, camshaft, gears from heavy bunker-type diesel fuels	Steel alloy from roller bearings and shaft	Steel alloy from roller bearings and shaft				
Copper	Lube coolers, main and rod bearings, bushings, turbo bearings, lube additive	Bushings, clutch plates (auto/powershift), lube coolers	Bushings, thrust plates	Bushings, thrust plates, lube coolers			
Lead	Main and rod bearings, bushings, lead solder	Bushings (bronze alloy), lube additive supplement	Bushings (bronze alloy), grease contamination	Bushing (bronze alloy)			
Tin	Piston flashing, bearing over- lay, bronze alloy, babbit metal along with copper and lead	Bearing cage metal	Bearing cage metal, lube additive				
Cadmium	N/A	N/A	N/A	N/A			
Silver	Wrist pin bushings (EMDs), silver solder (from lube coolers)	Torrington needle bearings (Allison transmission)	N/A	Silver solder (from lube coolers)			
Titanium	Gas turbine bearings/hub/ blades, paint (white lead)	N/A	N/A	N/A			

Spectrometer Metals Guide (contd)							
Metal	Engines	Transmissions	Gears	Hydraulics			
Vanadium	From heavy bunker-type diesel fuels	N/A	N/A	N/A			
Contaminant Metals							
Silicon	Dirt, seals and sealants, coolant inhibitor, lube additive (15 ppm or less)	Dirt, seals and sealants, coolant inhibitor, lube additive (15 ppm or less)	Dirt, seals and seal- ants, coolant addi- tive, lube additive (15 ppm or less)	Dirt, seals and seal- ant, coolant addi- tive, lube additive (15 ppm or less)			
Sodium	Lube additive, coolant inhibitor, salt water contamination, wash detergents	Lube additive, coolant inhibitor, salt water contamination, wash detergents	Lube additive, salt water contamina- tion, airborne con- taminate	Lube additive, coolant inhibitor, salt water contamination, airborne contaminate			
Multi-Source Metals							
Molybde- num	Ring plating, lube additive, coolant inhibitor	Lube additive, coolant inhibitor	Lube additive, coolant inhibitor, grease additive	Lube additive, coolant inhibitor			
Antimony	Lube additive	Lube additive	Lube additive	Lube additive			
Manganese	Steel alloy	Steel alloy	Steel alloy	Steel alloy			
Lithium	N/A	Lithium complex grease	Lithium complex grease	Lithium complex grease			
Boron	Lube additive, coolant inhibitor	Lube additive, coolant inhibitor	Lube additive, coolant inhibitor	Lube additive, coolant inhibitor			
		Additive Metals					
Magnesium	Detergent dispersant additive, airborne contaminant at some sites	Detergent dispersant additive, airborne contaminant at some sites	Detergent dispersant additive, airborne contaminant at some sites	Detergent dispersant additive, airborne contaminant at some sites			
Calcium	Detergent dispersant additive, airborne contaminant at some sites, contaminant from water	Detergent dispersant additive, airborne contaminant at some sites, contaminant from water	Detergent dispersant additive, airborne contaminant at some sites, contaminant from water	Detergent dispersant additive, airborne contaminant at some sites, contaminant from wate			
Barium	Usually an additive from synthetic lubricants	Usually an additive from synthetic lubricants	Usually an additive from synthetic lubricants	Usually an additive from synthetic lubricants			
Phosphorus	Anti-wear additive (ZDP)	Anti-wear additive (ZDP)	Anti-wear additive (ZPD), EP additive (extreme pressure)	Anti-wear additive (ZDP)			
Zinc	Anti-wear additive (ZDP)	Anti-wear additive (ZDP)	Anti-wear additive (ZPD)	Anti-wear additive (ZDP)			

Test Types (cont'd)

• **Particle Count** – Measures the size and quantity of particles in a lubricant.

Significance: Oil cleanliness and performance.

• **Viscosity Test** – Measure of a lubricant's resistance to flow at a specific temperature.

Significance: Viscosity is the most important physical property of oil. Viscosity determination provides a specific number to compare to the recommended oil in service. An abnormal viscosity $(\pm 15\%)$ is usually indicative of a problem.

• **FT-IR Spectroscopy** – Measures the chemical composition of a lubricant.

Significance: Molecular analysis of lubricants and hydraulic fluids by FT-IR spectroscopy produces direct information on molecular species of interest, including additives, fluid breakdown products, and external contamination.

• **Direct Read Ferrography** – Measures the relative amount of ferrous wear in a lubricant.

Significance: The direct read gives a direct measure of the amount of ferrous wear metals of different size present in a sample. Trending of this information reveals changes in the wear mode of the system.

• Analytical Ferrography – Allows analyst to visually examine wear particles present in a sample.

Significance: A trained analyst visually determines the type and severity of wear deposited onto the substrate by using a high magnification microscope. The particles are readily identified and classified according to size, shape, and metallurgy.

• **Total Acid Number** – Measures the acidity of a lubricant.

Description: Organic acids, a by-product of oil oxidation, degrade oil properties and lead to corrosion of the internal components. High acid levels are typically caused by oil oxidation.

6.3.3 Types of Equipment

Although independent laboratories generally perform oil analysis, some vendors do provide analysis equipment that can be used on-site to characterize oil condition, wear particles, and contamination. These devices are generally composed of several different types of test equipment and standards including viscometers, spectrometers, oil analyzers, particle counters, and microscopes. On-site testing can provide quick verification of a suspected oil problem associated with critical components such as water contamination. It can also provide a means to quickly define lubricant condition to determine when to change the lubricant medium. For the most part, detailed analysis will still require the services of an independent laboratory.

Typical oil analysis equipment available from several different vendors.

6.3.4 System Applications

- Turbines
- Boiler feed pumps
- Electrohydraulic control (EHC) systems
- Hydraulics
- Servo valves
- Gearboxes
- Roller bearings
- Anti-friction bearings
- Any system where oil cleanliness is directly related to longer lubricant life, decreased equipment wear, or improved equipment performance

6.3.5 Equipment Cost/Payback

For facilities utilizing a large number of rotating machines that employ circulating lubricant, or for facilities with high dollar equipment using circulating lubricant, few predictive maintenance technologies can offer the opportunity of such a high return for dollars spent. Analysis for a single sample can run from \$6 to \$60 depending on the level of analysis requested. Given the high equipment replacement cost, labor cost, and downtime cost involved with a bearing or gearbox failure, a single failure prevented by the performance of oil analysis can easily pay for a program for several years.

6.3.6 Case Studies

Reduced Gear Box Failure

Through oil analysis, a company determined that each time oil was added to a gear reducer, contamination levels increased and this was accompanied by an increase in bearing and gear failures. Further examination determined that removing the cover plate to add oil allowed contamination from the process to fall into the sump. Based on this, the system was redesigned to prevent the introduction of contamination during oil addition. The result was a reduction in bearing/gearbox failure rates.

Oil Changes When Needed

A major northeast manufacturer switched from a preventive maintenance approach of changing oil in 400 machines using a time-based methodology to a condition-based method using in-house oil analysis. The oil is now being changed based on its actual condition and has resulted in a savings in excess of \$54,000 per year.

Oil Changes and Equipment Scheduling

A northeast industrial facility gained an average of 0.5 years between oil changes when it changed oil change requirements from a preventive maintenance time-based approach to changing oil based on actual conditions. This resulted in greater than a \$20,000 consumable cost in less than 9 months.

A large chemical manufacturing firm saved more than \$55,000 in maintenance and lost production cost avoidance by scheduling repair of a centrifugal compressor when oil analysis indicated water contamination and the presence of high ferrous and non-ferrous particle counts.

6.3.7 References/Resources

The references and resources provided below are by no means all-inclusive. The listed organizations are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

6.3.7.1 Analysis Equipment Resources

Computational Systems, Inc.

Knoxville, TN

Telephone: (865) 675-2400

Fax: (865) 218-1401

Web address: www.compsys.com

Reliability Direct, Inc.

League City, TX

Telephone: (281) 334-0766

Fax: (281) 334-4255

Web address: www.reliabilitydirect.com

Spectro, Inc.

Industrial Tribology Systems

Littleton, MA

Telephone: (978) 486-0123

Fax: (978) 486-0030

E-Mail: Info@SpectroInc.com Web address: www.spectroinc.com

6.3.7.2 Oil Analysis Laboratories

Computational Systems, Inc.

Knoxville, TN

Telephone: (865) 675-2400

Fax: (865) 218-1401

Web address: www.comsys.com

LubeTrak

Sandy, UT

Telephone: 1-866-582-3872 (Toll Free)

Web address: www.lubetrak.com

Polaris Laboratories

Indianapolis, IN

Telephone: (877) 808-3750

Fax: (317) 808-3751

Web address: www.polarislabs1.com

PdMA Corporation

Tampa, FL

Telephone: (813) 621-6563 or 1-800-476-6463

Fax: (813) 620-0206

Web address: www.pdma.com

Analysts, Inc.

Locations throughout the U.S. Telephone: (800) 336-3637

Fax: (310) 370-6637

Web address: www.analystsinc.com

6.3.7.3 Internet Resource Sites

www.testoil.com

- Sample report
- Free oil analysis
- Industry related articles
- Test overview
- Laboratory services
- Training services

www.compsys.com

- Laboratory service
- Technical articles
- Application papers
- Sample report
- Training services
- Technical notes

www.pdma.com

- Related articles
- Training material
- Analysis services
- Industry links

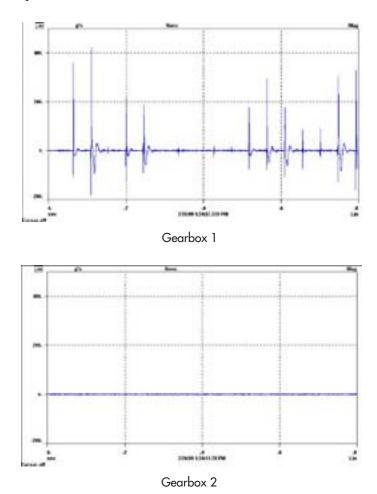
www.natrib.com

- Technical articles
- Case studies
- Newsletters
- Application notes

6.4 Ultrasonic Analysis

6.4.1 Introduction

Ultrasonic, or ultrasounds, are defined as sound waves that have a frequency level above 20 kHz. Sound waves in this frequency spectrum are higher than what can normally be heard by humans. Non-contact ultrasonic detectors used in predictive maintenance detect airborne ultrasound. The frequency spectrums of these ultrasounds fall within a range of 20 to 100 kHz. In contrast to IR emissions, ultrasounds travel a relatively short distance from their source. Like IR emissions, ultrasounds travel in a straight line and will not penetrate solid surfaces. Most rotating equipment and many fluid system conditions will emit sound patterns in the ultrasonic frequency spectrum. Changes in these ultrasonic wave emissions are reflective of equipment condition. Ultrasonic detectors can be used to identify problems related to component wear as well as fluid leaks, vacuum leaks, and steam trap failures. A compressed gas or fluid forced through a small opening creates turbulence with strong ultrasonic components on the downstream side of the opening. Even though such a leak may not be audible to the human ear, the ultrasound will still be detectable with a scanning ultrasound device.


Ultrasounds generated in vacuum systems are generated within the system. A small percentage of these ultrasonic waves escape from the vacuum leak and are detectable, provided the monitoring is performed close to the source or the detector gain is properly adjusted to increase detection performance. In addition to system vacuum or fluid leaks, ultrasonic wave detection is also useful in defining abnormal conditions generated within a system or component. Poorly seated valves (as in the case of a failed steam trap) emit ultrasounds within the system boundaries as the fluid leaks past the valve seat (similar to the sonic signature generated if the fluid was leaking through the pipe or fitting walls). These ultrasounds can be detected using a contact-type ultrasonic probe.

Ultrasonic detection devices can also be used for bearing condition monitoring. According to National Aeronautics and Space Administration (NASA) research, a 12-50x increase in the amplitude of a monitored ultrasonic frequency (28 to 32 kHz) can provide an early indication of bearing deterioration.

Ultrasonic detection devices are becoming more widely used in detection of certain electrical system anomalies. Arcing/tracking or corona all produce some form of ionization that disturbs the air molecules around the equipment being diagnosed and produces some level of ultrasonic signature. An ultrasonic device can detect the high-frequency noise produced by this effect and translate it, via heterodyning, down into the audible ranges. The specific sound quality of each type of emission is heard in headphones while the intensity of the signal can be observed on a meter to allow quantification of the signal.

In addition to translating ultrasonic sound waves into frequencies heard by the human ear or seen on a meter face, many ultrasonic sound wave detectors provide the capability to capture and store the detectors output. Utilizing display and analysis software, a time waveform of the ultrasonic signature can then be visually displayed. This functionality increases the technology's capability to capture and store quantifiable data related to a components operating condition. Ultrasonic signature information can then be used to baseline, analyze, and trend a component's condition. In contrast to a technician's subjective analysis of a component's condition using an audio signal, many ultrasonic anomalies indicative of component problems are more easily defined using a signature profile. The following images of ultrasonic time waveforms from two identical gearboxes illustrate how ultrasonic signature data

storage and analysis can be used to quantify machine condition. Gearbox "1" waveform shows an ultrasonic signature anomaly that may be attributable to missing or worn gear teeth, while Gearbox "2" signature shows a flat profile.

Generally, this type of diagnosis can be performed on a standard personal computer (PC). The programs not only provide the spectral and time series views of the ultrasonic signature but enable users to hear the translated sound samples simultaneously as they are viewing them on the PC monitor.

6.4.2 Types of Equipment

Typical hand-held ultrasonic detector.

Ultrasonic analysis is one of the less complex and less expensive predictive maintenance technologies. The equipment is relatively small, light, and easy to use. Measurement data is presented in a straightforward manner using meters or digital readouts. The cost of the equipment is moderate and the amount of training is minimal when compared to other predictive maintenance technologies. The picture to the right shows a typical ultrasonic detection device.

Since ultrasounds travel only a short distance, some scanning applications could present a safety hazard to the technician or the

area of interest may not be easily accessible. In these applications, the scanning device is generally designed with a gain adjust to increase its sensitivity, thereby allowing scanning from a greater distance than normal. Some ultrasonic detectors are designed to allow connection of a special parabolic dishtype sensing device (shown at right) that greatly extends the normal scanning distance.

6.4.3 System Applications

6.4.3.1 Pressure/Vacuum Leaks

- Compressed air
- Oxygen
- Hydrogen, etc.
- Heat exchangers
- Boilers
- Condensers
- Tanks
- Pipes
- Valves
- Steam traps.

Parabolic dish used with ultrasonic detector greatly extends detection range abilities.

6.3.3.2 Mechanical Applications

- Mechanical inspection
- Bearings
- Lack of lubrication
- Pumps
- Motors
- Gears/Gearboxes
- Fans
- Compressors
- Conveyers.

Mechanical devices are not the only sources of ultrasonic emission. Electrical equipment will also generate ultrasonic waves if arcing/tracking or corona are present.

6.4.3.3 Electrical Applications

- Arcing/tracking/corona
- Switchgear
- Transformers
- Insulators
- Potheads
- Junction boxes
- Circuit breakers.

6.4.4 Equipment Cost/Payback

As indicated earlier, ultrasonic analysis equipment cost is minimal when compared to other predictive maintenance technologies. A hand-held scanner, including parabolic dish, software, probes, etc., will cost from \$1,000 to \$12,000. The minimal expense combined with the large savings opportunities will most often result in an equipment payback period of 6 months or less.

6.4.5 Case Studies

Ultrasound Detects Compressed Air Leaks

A northeast industrial plant was experiencing some air problems. The facility's two compressors were in the on mode for an inordinate amount of time, and plant management assumed a third compressor was needed, at a cost of \$50,000. Instead, the foundry invested less than \$1,000 in contracting an outside firm to perform an ultrasound inspection of its air system. In a single day, the ultrasound technician detected 64 air leaks accounting for an estimated total air loss of 295.8 cfm (26% of total system capacity). Considering it cost approximately \$50,014 per year (calculated at \$.04/kilowatt/hour) to operate the two air compressors, at a total of 1,120 cfm, correcting this air loss saved the plant \$13,000 per year. In addition, the plant avoided having to spend another \$50,000 on another air compressor, because after the leaks were found and repaired, the existing compressors were adequate to supply demand.

A Midwest manufacturer saved an estimated \$75,900 in annual energy costs as a result of an ultrasound survey of its air system. A total of 107 air leaks were detected and tagged for repair. These leaks accounted for an air loss of 1,031 cfm, equal to 16% of the total 6,400 cfm produced by the air compressors that supply the facility.

6.4.6 References/Resources

The references and resources provided below are by no means all-inclusive. The listed organizations are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

6.4.6.1 Equipment Resources

UE Systems

Elmsford, NY

Telephone: (914) 592-1220 or 1-800-223-1325

Fax: (914) 347-2181

Web address: uesystems.com

CTRL Systems, Inc.

Westminster, MD

Telephone: (877) 287-5797 Web address: www.ctrlsys.com

6.4.6.2 Service Companies

Plant Support and Evaluations, Inc.

New Berlin, WI

Telephone: 1-888-615-3559

Web address: www.plantsupport.com

PMCI

Elk Grove Village, IL

Telephone: 1-800-222-PMCI

Web address: www.pmcisystems.com

Mid-Atlantic Infrared Services, Inc.

Bethesda, MD

Telephone: (301) 320-2870

Web address: midatlanticinfrared.com

Specialized Diagnostic Technologies, Inc.

SDT North America

Cobourg, Ontario

Canada

Telephone: 1-800-667-5325

Web address: www.sdtnorthamerica.com

Superior Signal Company

Spotswood, NJ

Telephone: 1-800-945-TEST(8378) or

(732) 251-0800 Fax: (732) 251-9442

Web address: www.superiorsignal.com

UE Systems, Inc.

Telephone: (914) 592-1220 or 1-800-223-1325

(Toll Free)

Fax: (914) 347-2181

Web address: www.uesystems.com

Leek Seek

Telephone: TX: (512) 246-2071

CA: (909) 786-0795 FL: (727) 866-8118

Web address: www.leekseek.com

Allied Services Group

U.S. wide

Telephone: 1-800-551-4482

web address: www.alliedservicesgroup.com

6.4.6.3 Internet Resource Sites

www.uesystems.com

- Technology overview
- Training
- Links
- Sound demos

www.superiorsignal.com

- Technology overview
- Ultrasonic sound bites (examples)
- Ultrasonic spectral graphs

6.5 Vibration Analysis

6.5.1 Introduction

As all of us who ride or drive an automobile with some regularity know, certain mechanical faults or problems produce symptoms that can be detected by our sense of feel. Vibrations felt in the steering wheel can be an indicator of an out-of-balance wheel or looseness in the steering linkage. Transmission gear problems can be felt on the shift linkage. Looseness in exhaust system components can sometimes be felt as vibrations in the floorboard. The common thread with all these problems is that degeneration of some mechanical device beyond permissible operational design limitations has manifested itself by the generation of abnormal levels of vibration. What is vibration and what do we mean by levels of vibration? The dictionary defines vibration as "a periodic motion of the particles of an elastic body or medium in alternately opposite directions from the position of equilibrium when that equilibrium has been disturbed or the state of being vibrated or in vibratory motion as in (1) oscillation or (2) a quivering or trembling motion."

The key elements to take away from this definition are one: vibration is motion. Second, this motion is cyclic around a position of equilibrium. How many times have you touched a machine to see if it was running? You are able to tell by touch if the motor is running because of vibration generated by motion of rotational machine components and the transmittal of these forces to the machine housing. Many parts of the machine are rotating and each one of these parts is generating its own distinctive pattern and level of vibration. The level and frequency of these vibrations are different and the human touch is not sensitive enough to discern these differences. This is where vibration detection instrumentation and signature analysis software can provide us the necessary sensitivity. Sensors are used to quantify the magnitude of vibration or how rough or smooth the machine is running. This is expressed as vibration amplitude. This magnitude of vibration is expressed as:

- **Displacement** The total distance traveled by the vibrating part from one extreme limit of travel to the other extreme limit of travel. This distance is also called the "peak-to-peak displacement."
- **Velocity** A measurement of the speed at which a machine or machine component is moving as it undergoes oscillating motion.
- Acceleration The rate of change of velocity. Recognizing that vibrational forces are cyclic, both the magnitude of displacement and velocity change from a neutral or minimum value to some maximum. Acceleration is a value representing the maximum rate that velocity (speed of the displacement) is increasing.

Various transducers are available that will sense and provide an electrical output reflective of the vibrational displacement, velocity, or acceleration. The specific unit of measure to best evaluate the machine condition will be dependent on the machine speed and design. Several guidelines have been published to provide assistance in determination of the relative running condition of a machine. An example is seen in Figure 6.5.1. It should be said that the values defined in this guideline, or similar guidelines, are not absolute vibration limits above which the machine will fail and below which the machine will run indefinitely. It is impossible to establish absolute vibration limits. However, in setting up a predictive maintenance program, it is necessary to establish some severity criteria or limits above which action will be taken. Such charts are not intended to be used for establishing vibration acceptance criteria for rebuilt or newly installed machines. They are to be used to evaluate the general or overall condition of machines that are already installed and operating in service. For those, setting up a predictive maintenance program, lacking experience or historical data, similar charts can serve as an excellent guide to get started.

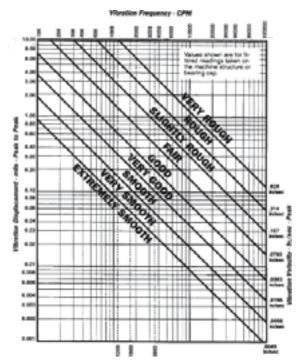


Figure 6.5.1. Vibration severity chart.

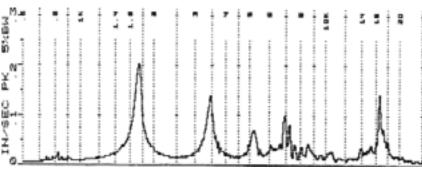


Figure 6.5.2. FFT - Example of graph breaking down vibration level at different frequencies

Figure 6.5.3. Typical vibration transducers.

As indicated earlier, many vibration signals are generated at one time. Once a magnitude of vibration exceeds some predetermined value, vibration signature analysis can be used in defining the machine location that is the source of the vibration and in need of repair or replacement. By using analysis equipment and software, the individual vibration signals are separated and displayed in a manner that defines the magnitude of vibration and frequency (Figure 6.5.2). With the understanding of machine design and operation, an individual schooled in vibration signature analysis can interpret this information to define the machine problem to a component level.

6.5.2 Types of Equipment

Depending on the application, a wide variety of hardware options exist in the world of vibration. Although not complicated, actual hardware requirements depend on several factors. The speed of the machine, on-line monitoring versus off-line data collection, analysis needs, signal output require-

ments, etc., will affect the type of equipment options available. Regardless of the approach, any vibration program will require a sensing device (transducer) to measure the existing vibration and translate this information into some electronic signal. Transducers are relatively small in size (see Figure 6.5.3) and can be permanently

mounted or affixed to the monitoring location periodically during data collection.

In some cases, the actual translation of the vibration to an electrical signal occurs in a hand-held monitoring device. A metal probe attached to a hand-held instrument is held against a point of interest and the instrument translates the motions felt on the probe to some sort of electrical signal. Other portable devices utilize a transducer and hand-held data collection device. Both styles will provide some sort of display where the vibration magnitude is defined. Styles and equipment size vary greatly, but equipment is designed to be portable.

Examples of typical hand-held vibration sensing meters. Note readout providing immediate level indication.

Typical Vibration Analyzer – Note liquid crystal display providing actual vibration waveform information in addition to machine condition analytical capabilities.

In addition to instruments designed to measure vibration magnitude, many manufacturers provide instrumentation that will perform signal analysis as well. Some equipment is a stand-alone design and performs analysis in the field independent of computer interface while other equipment designs interface tranducers directly with a PC where analysis software is utilized to interpret the signal data.

Some signal acquisition and analysis equipment interface a PC directly with the sensors.

6.5.3 System Applications

Vibration monitoring and analysis can be used to discover and diagnose a wide variety of problems related to rotating equipment. The following list provides some generally accepted abnormal equipment conditions/faults where this predictive maintenance technology can be of use in defining existing problems:

- Unbalance
- Eccentric rotors
- Misalignment

- Resonance problems
- Mechanical looseness/weakness
- Rotor rub

- Sleeve-bearing problems
- Rolling element bearing problems
- Flow-induced vibration problems
- Gear problems
- Electrical problems
- Belt drive problems.

Analyzing equipment to determine the presence of these problems is not a simple and easily performed procedure. Properly performed and evaluated vibration signature analysis requires highly trained and skilled individuals, knowledgeable in both the technology and the equipment being tested. Determination of some of the problems listed is less straightforward than other problems and may require many hours of experience by the technician to properly diagnosis the condition.

6.5.4 Equipment Cost/Payback

As indicated earlier, the styles, types, and capabilities of vibration monitoring equipment vary greatly. Naturally, equipment cost follows this variance. Transducers can cost under \$100. The expected cost for vibration metering devices capable of defining magnitude with no analysis capability is approximately \$1,000. The cost goes up from there. A high-end vibration analyzer with software and all the accessories can exceed \$30,000. A typical industrial site can expect to recover the cost of the high-end equipment investment within 2 years. Sites with a minimal number of rotating equipment, low-cost equipment installations, and/or no production related concerns may find it uneconomically advantageous to purchase a \$30,000 vibration analysis system. These facilities may be wise to establish an internal program of vibration monitoring using a low-cost vibration-metering device and then employ the services of an outside contractor to conduct periodic surveys. These services generally range in cost from \$600 to \$1,200 per day.

6.5.5 Case Studies

Vibration Analysis on Pump

Vibration analysis on a 200-hp motor/pump combination resulted in determination of improperly sized shaft bearings on both the pump end and the motor end. Repair costs were less than \$2,700. Continued operation would have led to failure and a replacement cost exceeding \$10,000.

6.5.6 References/Resources

The references and resources provided below are by no means all-inclusive. The listed organizations are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

6.5.6.1 Equipment Resources

Wilcoxon Research, Inc.

Gaithersburg, MD

Telephone: (301) 330-8811 or 1-800-945-2696

Web site: www.wilcoxon.com

SKF Condition Monitoring

San Diego, CA

Telephone: (858) 496-3400

Fax: (858) 496-3531

Web address: www.skf.com/reliability

Computational Systems, Inc.

Knoxville, TN

Telephone: (865) 675-2400

Fax: (865) 218-1401

Web address: www.compsys.com

DLI Engineering Corporation

U.S. wide

Telephone: 1-800-654-2844 or (206) 842-7656

Web address: www.dliengineering.com

6.5.6.2 Service Companies

Industrial Research Technology

Bethlehem, PA - Pittsburgh, PA -

Cleveland, OH - Detroit, MI - Chicago, IL -

Charleston, SC

Telephone: (610) 867-0101 or

1-800-360-3594 Fax: (610) 867-2341

VibrAlign

530G Southlake Boulevard Richmond, VA 23236

Voice: (804) 379-2250 Fax: (804) 379-0189 Toll Free: 800-394-3279

Email: info@vibralign.com

6.5.6.3 Internet Resource Sites

Plant-maintenance.com

- Training material
- Industry links
- Free software
 - FFT/CMMS/Inventory control
- Technical articles
- Maintenance related articles

www.bksv.com/bksv/

- Products
- Industry articles
- Links

www.skf.com

- References and links
- Articles
- Products
- Training

Commtest

Gaithersburg, MD

Telephone: (240) 632-9097 Web address: www.commtest.com

Bruël & Kjær

Norcross, GA

Telephone: (770) 209-6907 or 1-800-332-2040

Fax: (770) 448-3246

Web address: www.bksv.com

Computational Systems, Inc.

835 Innovation Drive Knoxville, TN 37932

Telephone: (865) 675-2110

Fax: (865) 218-1401

SKF Condition Monitoring

Telephone: (858) 496-3400

4141 Ruffin Road San Diego, CA 92123

Fax: (858) 496-3531

Allied Services Group

U.S. wide

Telephone: 1-800-551-4482

Web address: www.alliedservicesgroup.com

www.reliabilityweb.com

- Training material
- Industry links
- Free software
 - FFT/CMMS/Inventory control
- Technical articles
- Maintenance related articles

www.maintenance-news.com

- Industry links
- Technical articles
- Maintenance related articles

6.6 Motor Analysis

6.6.1 Introduction

When it comes to motor condition analysis, infrared (IR) and vibration will not provide all the answers required to properly characterize motor condition. Over the past several years, motor condition analysis techniques have evolved from simple meggering and hi-pot testing into testing techniques that more accurately define a motor's condition. Motor faults or conditions like winding short-circuits, open coils, improper torque settings, as well as many mechanically related problems can be diagnosed using motor analysis techniques. Use of these predictive maintenance techniques and technologies to evaluate winding insulation and motor condition has not grown as rapidly as other predictive techniques. Motor analysis equipment remains fairly expensive and proper analysis requires a high degree of skill and knowledge. Recent advances in equipment portability and an increase in the number of vendors providing contracted testing services continue to advance predictive motor analysis techniques. Currently, more than 20 different types of motor tests exist, depending on how the individual tests are defined and grouped. The section below provides an overview of two commonly used tests.

6.6.2 Motor Analysis Test

6.6.2.1 Electrical Surge Comparison

In addition to ground wall insulation resistance, one of the primary concerns related to motor condition is winding insulation. Surge comparison testing can be used to identify turn-to-turn and phase-to-phase insulation deterioration, as well as a reversal or open circuit in the connection of one or more coils or coil groups. Recent advances in the portability of test devices now allow this test technique to be used in troubleshooting and predictive maintenance. Because of differences in insulation thickness, motor winding insulation tends to be more susceptible to failure from the inherent stresses existing within the motor environment than ground wall insulation. Surge comparison testing identifies insulation deterioration by applying a high frequency transient surge to equal parts of a winding and comparing the resulting voltage waveforms. Differences seen in the resulting waveforms are indicative insulation or coil deterioration. A properly trained test technician can use these differences to properly diagnose the type and severity of the fault. In addition to utilization of this motor analysis technique in a predictive maintenance program, it can also be used to identify improper motor repair practices or improper operating conditions (speeds, temperature, load).

Surge comparison testing is a moderately complex and expensive predictive maintenance technique. As with most predictive maintenance techniques, the greatest saving opportunities do not come directly from preventing a catastrophic failure of a component (i.e., motor) but rather the less tangible cost saving benefits. Reduced downtimes, ability to schedule maintenance, increased production, decreased overtime, and decreased inventory cost are just a few of the advantages of being able to predict an upcoming motor failure.

6.6.2.2 Motor Current Signature Analysis

Another useful tool in the motor predictive maintenance arsenal is motor current signature analysis (MCSA). MCSA provides a non-intrusive method for detecting mechanical and electrical problems in motor-driven rotating equipment. The technology is based on the principle that a conventional electric motor driving a mechanical load acts as a transducer. The motor (acting as a transducer)

senses mechanical load variations and converts them into electric current variations that are transmitted along the motor power cables. These current signatures are reflective of a machine's condition and closely resemble signatures produced using vibration monitoring. These current signals are recorded and processed by software to produce a visual representation of the existing frequencies against current amplitude. Analysis of these variations can provide an indication of machine condition, which may be trended over time to provide an early warning of machine deterioration or process alteration.

Motor current signature analysis is one of the moderately complex and expensive predictive techniques. The complexity stems in large part from the relatively subjective nature of interpreting the spectra, and the limited number of industry-wide historical or comparative spectra available for specific applications.

6.6.3 System Applications

- Stem packing degradation
- Incorrect torque switch settings
- Degraded stem or gear case lubrication
- Worn gear tooth wear
- Restricted valve stem travel
- Obstructions in the valve seat area
- Disengagement of the motor pinion gear
- Improper seal/packing installation

- Improper bearing or gear installation
- Inaccurate shaft alignment or rotor balancing
- Insulation deterioration
- Turn-to-turn shorting
- Phase-to-phase shorting
- Short circuits
- Reversed or open coils.

6.6.4 Equipment Cost/Payback

As indicated earlier, motor analysis equipment is still costly and generally requires a high degree of training and experience to properly diagnosis equipment problems. A facility with a large number of motors critical to process throughput may find that ownership of this technology and adequately trained personnel more than pays for itself in reduced downtime, overtime cost, and motor inventory needs. Smaller facilities may find utilization of one of the many contracted service providers valuable in defining and maintaining the health of the motors within their facility. As with most predictive maintenance contract services, cost will range from \$600 to \$1,200 per day for on-site support. Finding a single motor problem whose failure would result in facility downtime can quickly offset the cost of these services.

6.6.5 References/Resources

The references and resources provided below are by no means all-inclusive. The listed organizations are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

6.6.5.1 Equipment Resources

Computational Systems, Inc.

835 Innovation Drive Knoxville, TN 37932 Telephone: (865) 675-2110

Fax: (865) 218-1401

Chauvin Arnoux®, Inc.

d.b.a. AEMC® Instruments 200 Foxborough Boulevard Foxborough, MA 02035

Telephone: (508) 698-2115 or (800) 343-1391

Fax: (508) 698-2118 Email: sales@aemc.com

6.6.5.2 Service Companies

Industrial Technology Research

Bethlehem, PA - Pittsburgh, PA -Cleveland, OH - Detroit, MI - Chicago, IL -Charleston, SC - Hamilton, ONT

Telephone: (610) 867-0101 or (800) 360-3594

Fax: (610) 867-2341

Littlejohn-Reuland Corp.

4575 Pacific Boulevard Vernon, CA 90058 Telephone: (323) 587-5255

Fax: (323) 581-8385

Tru-Tec Services, Inc.

Magna-Tec

Telephone: (800) 232-8411

AVO International

4651 S. Westmoreland Road Dallas, TX 75237-1017 Telephone: (800) 723-2861 Fax: (214) 333-3533

Baker Instrument Company

4812 McMurry Avenue Fort Collins, CO 80525

Telephone: (970) 282-1200 or (800) 752-8272

Fax: (970) 282-1010

UE Amarillo

5601 W. Interstate 40 Amarillo, TX 79106-4605 Telephone: (806) 359-2400 Fax: (806) 359-2499

SHERMCO Industries, Inc.

Dallas

2425 East Pioneer Drive Irving, TX 75061

Telephone: (972) 793-5523 or 1-888-SHERMCO

(Toll Free)

Fax: (972) 793-5542

6.6.5.3 Internet Site Resources

www.ic.ornl.gov

- On-line analysis system information
- Technology information contact resources

www.mt-online.com

- Technology overview
- Technology vendors
- Industry articles

www.reliabilityweb.com

- Service companies
- Training services
- Software links (including Motor Master)

6.7 Performance Trending

6.7.1 Introduction

In addition to the general preventive maintenance we perform, or have performed on our vehicles, many of us log and trend important parametric information related to the health of our vehicles and use this information to determine maintenance needs. We calculate and trend our cars mileage per gallon of gas. We track engine temperature and oil pressure. We track oil usage. This information is then used to define when vehicle maintenance is required. Maintenance activities such as tune-ups, thermostat replacement, cooling system flushes, belt replacements, oil seal replacements, etc., may all be originally stimulated by vehicle parametric information we trend.

Utilization of this performance trending approach can also be a valuable tool in maintaining the health and operational performance of the components in our facilities/plants. By logging and trending the differential pressure across a supply or discharge filter in the HVAC system, we can determine when filter replacement is required, rather than changing the filter out at some pre-defined interval (preventive maintenance). Logging and trending temperature data can monitor the performance of many heat exchangers. This information can be used to assist in the scheduling of tube cleaning. It may also serve as an indication that flow control valves are not working properly or chemical control measures are inadequate. Perhaps a decrease in heat exchanger performance, as seen by a change in delta-temperature, is due to biological fouling at our cooling loop pump suction. An increase in boiler stack temperature might be an indication of tube scaling. We may need to perform tube cleaning and adjust our chemistry control measures. Changes in combustion efficiency may be indicative of improperly operating oxygen trim control, fuel flow control, air box leakage, or tube scaling.

The key idea of performance trending is that much of the equipment installed in our facilities is already provided with instrumentation that can be used to assist in determination of the health/condition of the related component. Where the instruments are not present, installation of a pressure-sensing or temperature-sensing device is generally easily performed and inexpensive. Many times this information is already being logged at some pre-defined interval but not being utilized.

6.7.2 How to Establish a Performance Trending Program

One of the first steps of any predictive maintenance program is to know what equipment exists in your facility. First, generate a master equipment list, then prioritize the equipment on the list to define which pieces of equipment are critical to your facility's operation, important to personnel safety, or can have a significant budget impact (either through failure or inefficient operation).

Evaluate what parametric data should/could be easily collected from installed or portable instrumentation to provide information related to the condition/performance of the equipment on the master list based on your equipment prioritization.

Determine what, if any, of the defined data is already collected. Evaluate if any related parametric information is currently being tracked and if that information provides information regarding a components/systems condition or efficiency. Terminate the collection of information not useful in the evaluation of a component's condition/efficiency unless required by other administrative requirements.

Define and install instrumentation not currently available to monitor a critical component's condition/efficiency.

Log the information at some frequency defined by plant engineering or operational staff. For example, the frequency may be every 4 hours while operating or may simply be a single reading after reaching steady-state conditions, depending on the data evaluation needs.

Provide collected data to individual with knowledge and background necessary to properly trend and evaluate it.

6.7.3 System Applications

Generally, any plant component with installed, or easily installed, instrumentation useful in evaluating the components condition, operation, or efficiency can be trended. Information can also be obtained using portable instrumentation, e.g., an infrared thermometer. Some general applications might be:

- Heat exchangers
- Filters
- Pumps
- HVAC equipment
- Compressors
- Diesel/gasoline engines
- Boilers.

6.7.4 Equipment Cost/Payback

The cost to establish an effective trending program is minimal and can provide one of the largest returns on dollars expended. Most plants have much of the instrumentation needed to gain the parametric information already installed. Today's instrumentation offers many cost-effective opportunities to gather information without having to incur the expense of running conduit with power and signal cabling. The information gatherers are generally already on the payroll and in many cases, already gathering the needed information to be trended. For the most part, establishing a trending program would require little more than using the information already gathered and currently collecting dust. Payback for the little extra money spent is quickly recovered in increased machine efficiency and decreased energy cost.

6.7.5 References/Resources

The resources provided below are by no means all-inclusive. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

Although few Web sites provide specific information related to the performance trending methodology, several vendors do provide software to assist in data collection and analysis. A few of these vendors can be found at:

- http://www.monarchinstrument.com/ontime.htm.
- http://www.rtx.com/TrendLink.htm.

Chapter 7 Commissioning Existing Buildings

7.1 Introduction

Commissioning of existing buildings is quickly becoming one of the most important topics in the building management arena. In general, commissioning is the process of ensuring that a building performs according to its design intent and the needs of its owners and occupants (Anderson 1997). While additional research is needed to further pinpoint the costs and resulting benefits of commissioning new and existing buildings, numerous case studies have demonstrated resulting O&M-related energy efficiency improvements on the order of 5% to 30% covering a wide range of building uses. The resulting simple payback periods are typically less than 2 years and often less than 0.5 year.

Ideally, the building commissioning process begins during the planning stages of a new building design or new equipment installation. The fact is that the vast majority of buildings have never been commissioned. Even today, with mounting evidence of resulting expected benefits, very few new buildings undergo a complete commissioning process. Instead, new buildings are typically turned over to the building operating staff with operating problems in place, incomplete documentation, and minimal operator training for building-specific equipment. These same problems occur with major equipment installations. Then, during building and equipment operations phases, the overall efficiency of mechanical systems degrades as sensors drift, short-term adjustments are made, tenant needs change, and so on. Even after adjustments are made, perhaps through a one-time recommissioning effort, performance degradation is continuous.

Commissioning of existing buildings (and more specifically the energy-consuming mechanical/ electrical systems within them and control systems that monitor them) is critical to ensure energy efficient operation. Additional benefits include extended equipment life, increased tenant satisfaction through improved space comfort, improved indoor air quality, and fewer O&M emergency calls.

7.2 Definitions

There are a number of commissioning approaches that can be applied to building mechanical/electrical equipment and systems.

New Building Commissioning: New building commissioning (Cx) is a means to ensuring through design reviews, functional testing, system documentation, and operator training that systems and equipment in new buildings are operating properly.

Recommissioning: Recommissioning (RCx), which is sometimes referred to as "retrocommissioning," is the practice of commissioning existing buildings – testing and adjusting the building systems to meet the original design intent and/or optimize the systems to satisfy current operational needs. RCx relies on building and equipment documentation, along with functional testing to optimize performance.

Continuous CommissioningTM: Continuous commissioning TM refers to a commissioning approach that is integrated into a facility's standard O&M program. As such, activities in support of the continuous commissioning TM effort are completed on a regular basis, compared with recommissioning approaches that tend to be distinct events. The continuous commissioning TM (CC) approach

developed by the Energy Sciences Laboratory at Texas A&M University is a formalized continuous commissioning[™] approach and is defined as "an ongoing process to resolve operating problems, improve comfort, optimize energy use and to identify retrofits for existing commercial and institutional buildings and central plant facilities" (Texas A&M 2002). Continuous commissioning[™] is the most costly existing building commissioning approach due to necessary allocations of staff and equipment; however, the higher costs can work to identify equipment inefficiencies as they occur, allowing for quick remediation, greater energy and cost savings, and better building services. By definition, continuous commissioning [™] works to ensure more stable building operations over time than the recommissioning approaches.

Value Recommissioning: Value recommissioning (VCx) is the lowest cost option that focuses on the most common opportunities, ideally incorporating them into daily operating procedures. VCx is the least comprehensive and requires the least specialized skill set. VCx concentrates on the most common opportunities that typically carry the shortest payback periods. Therefore, VCx is best applied in buildings where resources for structured recommissioning or continuous commissioning TM

Summary of Commissioning Approaches							
Commissioning Approach	Primary Objectives	Relative Costs	Benefits	Best Applications			
New building or new equipment commissioning	Ensure new equipment is correctly installed and operating correctly.	Costs vary by size of building and complexity of systems: \$0.50 to \$3.00 per square foot (Welker 2003).	Owners know equipment operates correctly and as intended at acceptance. Resulting documentation and training helps establish correct building operations and are useful to future recommissioning ing activities.	The commissioning process should be applied to new buildings and equipment at the beginning of the project-planning phase.			
Recommissioning (RCx)	Adjust equipment to provide services within equipment specifications while also meeting curent mission/tenant operating requirements.	\$0.05 to \$0.40 per square foot. Additional data are needed to help pinpoint costs based on specific building features and the scope of the RCx effort.	Verifies and restores equipment operation in accordance with original design intent and/or to meet current operating requirements.	Since RCx is a point-in- time event, best appli- cations are for buildings/ systems that have not been adequately main- tained (recommissioned) for some period of time, especially those systems that have not been adapted to accommo- date changing space/ tenant needs.			
Continuous Commissioning™	Integrate comprehensive commissioning approach into on-going facility O&M program.	Highest cost option for existing buildings and systems.	Identifies and addresses problems as they occur. Energy savings persist. Should generate greatest energy savings.	Continuous commissioning™ is the preferred approach when resources (staffing and equipment) are available.			
Value Recommissioning (VCx)	Focus on the most frequently available recommissioning/ retrocommissioning opportunities with highest payback as part of daily O&M.	Lowest cost option for existing buildings and systems.	Can be completed by in-house staff. Minimal up-front or on-going investment required.	VCx can be applied in virtually any building. Can be used to demonstrate benefits of larger, more aggressive existing building commissioning program.			

programs are not available. In addition to realizing highly cost-effective energy savings, tracking benefits (i.e., energy savings, cost savings, and reduced occupant complaints) of VCx activities can be helpful in developing justifications for funding requests of the more robust commissioning approaches.

7.3 Typical Findings from Existing Building Commissioning

Many case studies of existing building commissioning efforts have been published over the years. A review of case studies for multiple buildings published by Portland Energy Conservation, Inc. (PECI), Texas A&M University, proceedings from National Building Commissioning Conferences, and FEMP Assessments of Load and Energy Reduction Techniques (ALERT) is useful in identifying measures most typically available in commercial building spaces. The most frequently cited measures/opportunities are:

- Adjust reset and set-back temperatures and temperature settings Settings are often adjusted over time based on personal preferences, to compensate for inadequate system operation, or to achieve energy savings. In addition, sensors require periodic recalibration.
- Staging/sequencing of boilers, chillers, and air handling units Equipment should be operated in the most efficient combination of chillers, boilers, and fans at varying load conditions.
- Adjust and repair dampers and economizers Malfunctioning or poorly tuned dampers (including seals, actuators, and linkages) and economizers result in (1) increased supply air fan energy in the closed position or require additional air heating and cooling when open too much, (2) undesired building operating conditions due to lack of outside air, and (3) premature equipment degradation and replacement.
- Modify control strategies for standard hours of operation Motors, pumps, fans, and air handlers
 often operate on a 24/7 schedule even though not required by either the building tenants or the
 building operating plan.
- Eliminate simultaneous heating and cooling Heating and cooling systems for the same space can compete against each other due to improper setpoints.
- Air and water distribution balancing and adjustments Systems require rebalancing due to drift and changing building/workspace mission and/or tenant requirements.
- Verify controls and control sequencing including enabling and re-enabling automatic controls for setpoints, weekends, and holidays. Verify that overrides are released.

7.4 Costs and Benefits

While there are many case studies available on various building commissioning approaches, these case studies do not present costs and measured savings in a uniform way. In addition, there are very few assessments of existing building commissioning efforts containing a "large" building sample from which generalized cost and benefit conclusions can be drawn. This prevents us from being able to pinpoint costs for the various commissioning approaches, especially in 2004 dollars. We are, however, able to draw from the case studies trends in the costs and, in the case of existing building commissioning, the realized energy and/or cost savings.

7.4.1 New Building Commissioning Costs and Benefits (Welker 2003)

While O&M is typically thought of as being limited to existing buildings, it is important for building planners, designers, and O&M managers to consider O&M throughout the new building process. One important action is ensuring adequate resources are lined up for the building once it is operating. Another highly important action is commissioning the new building. New building commissioning begins during the planning process and runs through final acceptance. The primary goals of new building commissioning efforts are to

- ensure design intent criteria and the owner's requirements are documented and met
- ensure systems and equipment are fully functional and operate in an integrated manner
- provide documentation on systems and equipment that will be
- verify O&M staff training needs are met.

The cost of new building commissioning varies based on several factors including the building's use, which determines complexity of mechanical systems and size. Typical new building commissioning provider's fees range from \$0.50 per square foot (/ft²) for "simple" buildings (such as some spaces and classrooms) to \$3.00/ft² for complex buildings such as hospitals and laboratories. Economies-of-scale do apply. These cost ranges are summarized in Chart 1.

Summary of Recommissioning Case Study Publications

"What Can Commissioning Do for Your Building" (PECI 1997) compiled a database of 175 buildings commissioned between 1993 and 1997. Commissioned buildings were located in the United States and Canada, ranged in size from 12,500 to 2.2 million square feet, ranged in age from 1 (new) to 74 years with a median age of 6 years, and covered a range of end uses including office buildings, retail facilities, hospitals, schools, and laboratories. Data in the case study are compiled by building use and provide the following general findings: costs to commission ranged from \$0.02 to \$2.88 per square foot with a median cost per square foot ranging from \$0.09 to \$0.31 per square foot. Reported benefits include energy use and energy cost savings, extended equipment life, improved documentation, reduced equipment failure, increased staff training, improved temperature control, improved relative humidity control, reduced occupant complaints, air balancing, and improved indoor air quality (i.e., contaminant control, improved ventilation, and reduced carbon dioxide).

"Commissioning Existing Buildings" (Gregerson 1997) looks at the recommissioning of 44 existing buildings. Commissioning efforts occurred primarily between 1993 and 1996 ran from \$0.05 to \$0.40 per square foot with energy savings usually ranging from 5% to 15% and paybacks of less than 2 years. This analysis also reports that significant opportunities are often found in buildings with large deferred maintenance, energy intensive buildings, and medical and research facilities.

The "FEMP Continuous Commissioning Guidebook for Federal Energy Managers" (Texas A&M 2002) provides a summary of results at 28 buildings continuously commissioned as part of the Texas LoanSTAR program. Building uses included hospitals, offices, and dual-use buildings with laboratories and offices or classrooms and offices. Measured annual energy savings averaged \$0.64 per square foot per year (/ft²/yr) with an average simple payback period of 0.7 year. Average savings varied significantly for the building use types – \$1.26/ft²/yr for medical research buildings down to \$0.17 ft²/yr for school buildings.

7.4.2 Existing Building Commissioning Costs and Benefits

Of the numerous publications reporting or assessing existing building commissioning efforts, three contain significant building samples (see "Summary of Recommissioning Case Study Publications"). These publications, all of which rely on recommissioning efforts from the 1990s, show a range of resulting costs and savings. The reported average cost to recommission is usually in the range of \$0.05/ft² to \$0.40/ft². The simple payback period on these efforts is usually less than 2 years and quite frequently

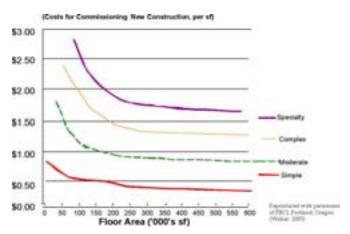


Chart 1. Construction Phase CX costs

less than 0.5 year. Additional reported benefits include reports of improved office comfort, reduced occupant complaints, improved indoor air quality, extended equipment life, reductions in equipment failure, and improved building documentation.

7.5 The Commissioning Process

A four-step process for existing building commissioning is often recommended (Haasl and Sharp 1999).

Step 1: Planning. The planning step includes developing and agreeing upon the overall commissioning objectives and strategies, assembling the project team, and compiling and perusing building and equipment documentation. Examples of objectives could be a desire to optimize building operations to reduce operating costs, address complaints from occupants regarding air quality or comforts, create a model facility, and improve facility O&M including reducing emergency trouble calls. Regarding the commissioning team formation, considerations in forming the team could include contracted or in-house staff, level of effort required, desired and necessary qualifications, availability and use of resident knowledge, and available funding resources.

Step 2: Investigation. During this step the site assessment is completed, monitoring and functional test plans are developed and executed, test results are analyzed, a master list of deficiencies is compiled, and recommendations for improvements, including estimates of energy and cost savings, are generated and presented for consideration.

Step 3: Implementation. Accepted recommendations from the investigation step are put into place in the implementation step. Actions include making repairs and improvements, retesting and re-monitoring for results, fine-tuning improvements as needed, and revising estimates energy and cost savings.

Step 4: Hand-off and Integration. Final documentation of the commissioning effort describing the process, individuals, systems information, and actions taken is developed in this step. Also developed is a plan for future commissioning efforts. Items addressed by the commissioning plan should include recommended procedures for specific building equipment, frequency of testing, analysis of results, periodic reporting, identification of key players, and budget requirements.

7.6 Commissioning Provider Qualifications

The question of who should complete the recommissioning effort can be addressed once the recommissioning objectives and budget have been established. Some facilities have the in-house capability to successfully recommission their own equipment, but most do not. Here are some qualifications to consider when selecting a commissioning provider:

- Experience in recommissioning similar types of buildings by use and/or by design
- Experience in recommissioning similar types of building systems
- Experience in providing O&M training
- Specialized skills to consider include
 - Air/water testing and balancing
 - Design, installation, and/or troubleshooting of DDCs and EMCSs
 - Demonstrated skills in working with metering and testing equipment/instrumentation.
- Relevant professional licenses and certifications (e.g., professional engineer)

7.7 The Future of Building Commissioning

The building commissioning field is in its infancy. The data to date have shown tremendous benefits across the board when commissioning has been preformed. While much more data are needed in order to fully verify and promote the energy and cost benefits, commissioning intuitively makes great business sense. As the awareness to the energy, cost and operational benefits is raised, we should expect to see the way commissioning is completed to become more effective and reliable and working toward becoming a regular part of the building operations process. Expect some of the following to help move the commissioning process forward.

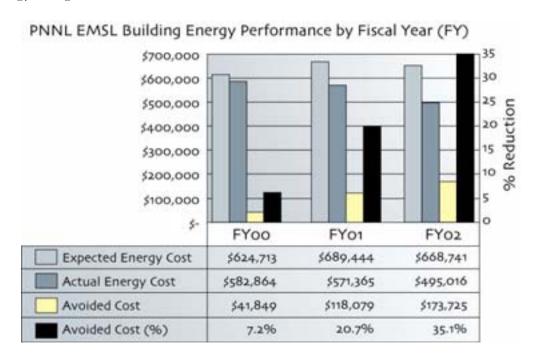
- Chronicled experiences will lead to better estimates of costs and potential savings.
- Statements of work will become more standardized.
- New functional testing protocols will be developed and made widely available.
- New automated diagnostic technologies will become critical components in establishing continuous commissioning[™] programs.
- Commissioning providers will be certified.

7.8 Case Study

In-House Recommissioning at a DOE National Laboratory

The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, is a 200,000-square-foot national scientific user facility. In fiscal year (FY) 2000, the energy management team at PNNL recognized an opportunity to improve the performance of the laboratory and reduce energy use and costs through recommissioning. Results: In FY 2002, the estimated resulting annual energy savings of 27% and

annual energy cost savings (avoidance) of 35%, or \$173,735, versus expected consumption and cost. With a total investment of approximately \$125,000, this retrocommissioning effort had a simple payback of well less than 1 year.


The energy performance for PNNL's EMSL building is shown in the bar graph on the next page.

The PNNL team followed the basic four-step commissioning approach. During the planning step, the team of in-house staff with experience in equipment operation, energy management, and engineering was assembled and overall objectives and strategies were agreed upon.

In the investigation step, a list of potential energy efficiency measures (EEMs) for the building was developed, the building systems were evaluated, cost estimates for corrective actions were generated, and opportunities prioritized. In developing the list of potential EEMs, the DOE Industrial Assessment Center (www.iac.rutgers.edu/database) served as a starting point.

During the implementation step, the implementation budget was finalized and occupant approvals obtained before changes were put into effect. EEMs deemed easy to complete, measure, and most likely to succeed were the first to be addressed. Results of these initial actions were then used to build-up credibility for the recommissioning approach and gain support to accomplish the full range of EEMs. Completed EEMs were monitored for results with readjustments made as necessary.

For the hand-off and integration step, PNNL has continued the recommissioning effort with activities such as monitoring building energy data, periodic review of operational changes, occupant and operator feedback, and monthly update reports. On-going monitoring of building performance helps to ensure that retrocommissioned building systems continue to operate in their optimized state and energy savings continue to be realized.

Roughly 200 low- and no-cost EEMs were put into place at EMSL. Examples of completed EEMs include

- HVAC systems tuning including modifying chilled water temperature setpoints, ensuring correct
 operation of heating and cooling valves, optimizing chiller operations, checking and correcting
 supply fan return dampers, optimizing selected fan heating/cooling strategies, reducing dead band
 limits on digital controls, and resetting building air flows as appropriate.
- Adjusting temperatures by modifying heat recovery system operational temperatures, modifying supply fan air discharge temperatures, resetting zonal thermostats to better match the conditions of the space (occupied or unoccupied), and applying additional night setbacks.
- Adding holiday schedules to building controls.
- Designating staff members to review operational strategies for facility systems for operational efficiency improvement opportunities.

While the energy and cost savings of the EMSL recommissioning effort are on the high-end, reported benefits of retrocommissioning efforts at other buildings are also impressive. Commissioning of existing buildings is an option that needs to be considered for inclusion in any O&M program.

7.9 Additional Resources

In addition to the references listed at the end of this chapter, there are many sources of information on existing and new building commissioning via the Internet.

The Portland Energy Conservation, Inc. website (www.peci.org) should be your first stop when searching for additional information on existing and new building commissioning. This website offers a wide variety of materials including guidance on the commissioning process, case studies, functional testing guides, links to other websites supporting commissioning activities, and more.

Other potential sources include your state energy office (some offer additional guidance, case studies, and possibly even funding/grants) and your servicing utilities as recommissioning is an excellent way to help meet demand side management initiative goals.

7.10 References

Gregerson, J. 1997. Commissioning Existing Buildings. TU-97-3, E Source, Boulder, Colorado.

Haasl, T. and T. Sharp. 1999. A Practical Guide for Commissioning Existing Buildings. ORNL/TM-1999/34, Oak Ridge, Tennessee. Available URL: http://www.ornl.gov/~webworks/cppr/y2001/rpt/101847.pdf

PECI. 1997. What Can Commissioning Do For Your Building? Portland Energy Conservation, Inc., Federal Energy Management Program, U.S. Department of Energy, Washington, D.C.

Texas A&M. 2002. Continuous Commissioning Guidebook for Federal Energy Managers. Federal Energy Management Program, U.S. Department of Energy, Washington, D.C. Available URL: http://www.eere.energy.gov/femp/pdfs/ccg02_introductory.pdf

Welker, P. 2003. Building Commissioning. Energy 2003. Available URL: http://www.energy2003.ee.doe.gov/presentations/om/4-welker.pdf

Chapter 8 Metering for Operations and Maintenance

8.1 Introduction

Metering and sub-metering of energy and resource use is a critical component of a comprehensive O&M program. Metering for O&M and energy efficiency refers to the measurement of quantities of energy delivered, for example, kilowatt-hours of electricity, cubic feet of natural gas, pounds of steam. Metering may also involve identifying times-of-use for the various energy sources, the instantaneous demand for energy, as well as identify energy use for a collection of buildings, individual buildings, rooms, or specific equipment (e.g., a boiler, chiller, or motor).

Facility resource metering has a variety of applications for the Federal facility energy manager. The necessity to control costs, diagnose equipment malfunction, allocate usage and set resource efficiency goals are all increasingly important reasons for energy and water metering. Furthermore, with the escalating volatility of energy and water rates, these needs are becoming more important.

Historically, the federal sector has lagged the private sector in metering applications. To this day at federal sites, it is common to find one "master"

Energy Bill of 108th Congress (pending as of this writing) Barton Bill – "Federal Leadership in Energy Conservation" Energy Use Measurement and Accountability

By October 1, 2010, all federal buildings shall, for the purposes of efficient use of energy and reduction in the cost of electricity used in such buildings, be metered or sub-metered in accordance with guidelines established by the Secretary under paragraph (2). Each agency shall use, to the maximum extent practicable, **advanced meters** or advanced metering devices that provide data at least daily and that measure at least hourly consumption of electricity in the federal buildings of the agency. Such data shall be incorporated into existing federal energy tracking systems and made available to Federal facility energy managers.

meter serving loads representing a few buildings to well in excess of 500 buildings. These master-metered accounts make it very difficult to manage energy use and are the primary driver for pending legislation requiring at least building-level metering for the majority of federal-sector buildings.

Regardless of the outcome of the proposed legislation, the metering of energy use in many federal buildings is cost-effective based on savings in energy, operations, and maintenance.

8.2 Importance of Metering

Metering provides the information that when analyzed allows the building operations staff to make informed decisions on how to best operate mechanical/electrical systems and equipment. These decisions will ultimately affect energy costs, equipment costs, and overall building performance. Reasons for metering vary by site; listed below are some rational to consider for submetering at your site.

- Monitor existing utility usage
- Verify utility bills
- Identify the best utility rate plans

Figure 8.1.1. Typical utility sockettype meter

- Measure, verify, and optimize equipment performance
- Isolate energy use and costs
- Measure, not estimate, tenant energy use
- Diagnose equipment and systems operations
- Manage energy use.

8.3 Metering Applications

The uses for metered data vary from site-to-site and while not all sites have the same uses, some of the more common applications are presented below (Sydlowski 1993).

- **Data Recording**. Advanced meters can duplicate the conventional metering function of recording total consumption, plus offer enhanced functions such as time-of-use, peak demand, load survey, and power outage recording. For electric metering, advanced meters may also include recording of other electric characteristics, such as voltage, current, and power factor.
- Total Consumption. This is the most basic data recording function, which duplicates the standard kilowatt-hour of electricity (kWh), hundred cubic feet volume (CCF) of gas, or gallons (gal) of water consumed between meter readings.
- **Time-of-Use Metering**. Different rates can be charged for on-peak and off-peak time periods by accumulating the total consumption during operator-defined time windows. The time windows may vary during both time of day and weekday/weekend/holiday.
- **Peak Demand Metering**. Billing of many larger commercial and industrial customers is based on total consumption and the highest 15-, 30-, or 60-minute demand during the billing period. The peak demand may be reported as a single highest value, highest four values, or highest value during each hour (all peak demand values must be accompanied by an associated time stamp).
- Load Survey (Profile or Time-Series Data). Energy consumption and conservation impact studies, as well as more complex analysis of system loading, require more detailed demand data. A load survey provides periodic consumption or demand data (in time increments of 1, 5, 15, 30, or 60 minutes).
- Monitoring and Control. A two-way communication link between a central station and customer site provides the opportunity for integrating some other utility functions into the metering functions. Meters can be programmed to detect and report by exception (e.g., report only when a fault is detected) for power outage, leak detection, and tamper detection. The meter can also dispatch control functions, such as remote service disconnect/reconnect, demand-side management (DSM) load control, and load scheduling.
- **Load Control**. Load control includes DSM control functions such as air conditioner and water heater load-shedding. The DSM load control could be triggered by a fixed algorithm operating independently or real-time central station control.
- **Load Scheduling**. This includes scheduled start and stop of equipment to minimize or shift load to take maximum advantage of the demand and time-of-use billing rate structures.
- **Leak Detection**. Continuous monitoring of gas or water usage or pressure can be used to detect leaks.

8.4 Metering Approaches

The four predominant levels of resource metering (EPRI 1996) are:

- One-time/spot measurement
- Run-time measurement
- Short-term monitoring
- Long-term monitoring

Each level has its own unique characteristics – no one monitoring approach is useful for all projects. A short description of each monitoring level is provided below.

8.4.1 One-Time/Spot Measurements

One-time measurements are useful in many "baseline" activities to understand instantaneous energy use, equipment performance, or loading. These measurements become particularly useful in trending equipment performance over time. For example, a spot measurement of a boiler-stack exhaust temperature, trended over time, can be very diagnostic of boiler efficiency.

Related to energy performance, one-time measurements are useful when an energy-efficiency project has resulted in a finite change in system performance. The amperage of an electric motor or lighting system taken before and after a retrofit can be useful to quantify system savings – assuming similar usage (hours of operation) before and after.

Equipment useful in making one-time/spot measurements include clamp-on amp probes, contact and non-contact temperature devices, non-intrusive flow measurement devices, and a variety of combustion-efficiency devices. Most of these measurements are obtained and recorded in the field by the analyst.

8.4.2 Run-Time Measurements

Run-time measurements are made in situations where hours-of-operation are the critical variable. These measurements are prevalent where an energy efficiency project has impacted the use (i.e., hours of operation) of a device. Appropriate applications for run-time measurements include the run times of fans and pumps, or the operational characteristics of heating, cooling, or lighting systems.

Because run-time measurements do not capture the energy-use component of the system, these measurements are typically used in conjunction with one-time/spot measurements. Equipment

One-time/Spot Measurement Advantages

- Lowest cost
- Ease of use
- Non-intrusive
- Fast results

One-time/Spot Measurement Disadvantages

- Low accuracy
- Limited application
- Measures single operating parameter

Run-Time Measurement Advantages

- Low cost
- Relatively easy of use
- Non-intrusive
- Useful for constant-load devices

Run-Time Measurement Disadvantages

- Limited application
- Measures single operating parameter
- Requires additional calculations/assumptions

useful in making run-time measurements include a variety of stand-alone (battery-operated) data loggers providing time-series record on run-time. Most of these devices are non-intrusive (i.e., the process or system is not impacted by their use or set-up) and are either optically triggered or take advantage of the electromagnetic characteristics of electrical devices. Run-time measurements are usually obtained in the field by the device, recorded to memory, and then downloaded by the analyst at a later date.

8.4.3 Short-Term Measurements/Monitoring

Short-term monitoring combines both elements of the previous two levels into a time-series record of energy or resource use: magnitude and duration. Typically, short-term monitoring is used to

Short-Term Measurement Advantages

- Mid-level cost
- Can quantify magnitude and duration
- Relatively fast results

Short-Term Measurement Disadvantages

- Mid-level accuracy
- Limited application
- Seasonal or occupancy variance deficient
- More difficult to install/monitor

verify performance, initiate trending, or validate energy efficiency improvement. In this level, the term of the monitoring is usually less than one year, and in most cases on the order of weeks to months. In the case of energy efficiency improvement validation, also known as *measurement and verification*, these measurements may be made for two-weeks prior and post installation of an efficiency improvement project. These data are then, using engineering and statistical methods, extrapolated over the year to report the annual impact.

Equipment useful in short-term monitoring includes a host of portable, stand-alone data loggers capable of multivariate time-series data collection and storage. Most of these data loggers accept a host of sensors including temperature, pressure, voltage, current flow, etc., and have standardized on input communications (e.g., 4 to 20 milliamperes or 0 to 5 volts). These loggers are capable of recording at user-selected intervals from fractions of a second, to hourly, to daily recordings. These systems usually rely on in-field manual downloading or, if available, modem and/or network connections.

8.4.4 Long-Term Measurements/Monitoring

Long-term monitoring also makes use of time-series recording of energy or resource use, but over a longer duration. Different from short-term use, this level focuses on measurements used in long-term

Long-Term Measurement Advantages

- Highest accuracy
- Can quantify magnitude and duration
- Captures most variance

Long-Term Measurement Disadvantages

- High cost
- Most difficult to install/monitor
- Time duration for result availability

trending or performance verification. The term is typically more than a year and quite often the installation is permanent.

Useful applications for this level of monitoring include situations where system use is influenced by variances in weather, occupant behavior, or other operating conditions. Other applications include reimbursable resource allocation, tenant billing activities, or in cases where the persistence of energy or resource savings over time is at issue.

Equipment useful in long-term monitoring included a variety of data loggers, utility-grade meters, or fixed data acquisition systems. In most cases these systems communicate via a network connection/phone modem to a host computer and/or over the internet.

8.5 Metering System Components

There are four necessary components to a viable building-level metering system; the meters, the data collection system, the data storage/retrieval system, and the analysis system/capability (AEC 2003; EPRI 1996). Each component is described below.

8.5.1 Meters

At the most basic level, all meters provide some output related to resource use – energy, water, natural gas, etc. Beyond this basic level, more sophisticated meters take advantage of additional capabilities including electrical demand tracking, power quality measurements, and multiple-meter communication for leak detection applications.

For electrical systems, meters can be installed to track whole-building energy use (e.g., utility meters), sub-panel energy use (e.g., a lighting or process circuit), or a specific end use (e.g., a motor or a chiller). For water, natural gas, and other flow-related applications, meters are typically in-line installations using positive displacement, insertion turbine, or pressure-related techniques. Depending on the need, any of these meters will vary in size, type, output configuration, accuracy, and price.

To better understand portable meters or data loggers and their vendors the report titled *Portable Data Loggers Diagnostic Tools for Energy-Efficient Building Operations* (PECI 1999) is particularly good. A list of vendors of larger, dedicated, whole-building meters can be found in the report titled *Advanced Utility Metering* (AEC 2003).

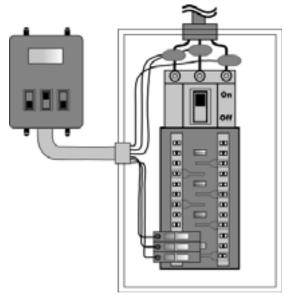


Figure 8.5.1. Typical electrical sub meter (box on left) used in long-term monitoring

8.5.2 Data Collection

Modern metering data collection systems take advantage of recent developments in communications technologies. Over the past 15 years, Automated Meter reading (AMR) systems have increased in sophistication and reliability, and now represent a very economic means of data collection. Available technologies include radio frequency, phone modem (including wireless/cellular), local area networks, and internet solutions.

8.5.3 Data Storage

The need for, and the duration of, data storage should be carefully considered in the design and implementation of a metering system. A clear understanding of data needs and applications will drive storage decisions. At the most basic level, metered data is easily stored in one of many available database systems. The duration of data storage is a function of data use; long-term end-use studies require longer duration storage, short-term daily comparisons require less. There are a variety of application service providers (ASPs) that can provide data storage and retrieval services on a fee-based service.

Metering Strategies

There are four predominant metering strategies to consider, each with its own level of data activity and estimated savings (Lewis 2003).

1. Install meters only with software for collecting data

Action:

- Storing energy data from individual buildings

Use of Meters/Data:

- Storing of information

Typical Savings: Installation of meters: 0%

2. Install meters with data collecting and cost allocation software

Action

- Accountability for meeting conservation goals
- Cost allocation to departments and outside vendors/reimbursable

Use of Meters/Data:

- Monthly reports for all departments
- Monthly bills to outside vendors/reimbursables

Typical Savings: Installation of meters and bill allocation: 2% to 5%

3. Install meters with data collecting and cost allocation software, and conduct operational analysis and building tune up

Action:

- Accountability for meeting conservation goals
- Cost allocation to departments and outside vendors
- Identification of inefficient operations
- Fine-tuning of building controls

Use of Meters/Data:

- Monthly reports for all departments
- Monthly bills to outside vendors
- Internal review and adjustment of building operations (time schedules, etc.)

Typical Savings: Installation of meters, bill allocation, and tune up: 5% to 15%

4. Install meters with data collecting and cost allocation software, and conduct continual operational analysis and building commissioning

Action:

- Accountability for meeting conservation goals and verifying savings from energy conservation measures (ECMs)
- Cost allocation to departments and outside vendors
- Continual commissioning™ of energy using systems
- Outside review of energy savings goals with staff

Use of Meters/Data:

- Monthly reports for all departments
- Monthly bills to outside vendors
- Action plan and fine tuning for high energy users
- Review with building staff and outside consultants to verify energy savings of ECMs

Typical Savings: Installation of meters, bill allocation, and persistent commissioning: 15% to 45%

8.5.4 Data Analysis

Large-scale analysis of energy data can be time consuming and expensive. In many cases, the manufacturers of metering equipment also provide off-the-shelf or custom software applications to assist these functions. In addition to the meter manufacturers, third-party software vendors, including some ASPs can provide data capture, collection/storage, and analysis services. Analytical services can range from simple use-reporting and tenant billing, to more sophisticated activities of energy use diagnostics and system performance indicators.

8.6 Metering Economics

The economic value of metering is directly proportional to the use of the resulting data. The range of potential resource savings related to metering vary with the building, equipment, and the use of the metered data. Economic savings attributed to metering can be as high as 20%; the higher savings percentages requiring a very proactive use of the metered data.

Metering system installed costs will vary with system, existing infrastructure, and meter type. On average, long-term whole-building type meter installed cost runs between \$1,000 to \$2,000 per point or meter. An average per meter installed cost is roughly \$1,500.

As federal agencies move toward increased metering, decisions need to be made on the optimal level of metering. In the extreme case, one would have difficulty justifying a meter installation on a small, seldom used, remote storage building. On the other hand, a large, continuously occupied administrative building would make a better case. At issue is where to draw the line, that is, below some set of criteria the economic case for metering becomes marginal.

The methodology below presents one method to approaching this decision. This calculation provides, given certain assumptions, the annual energy bill necessary to justify a building-level metering installation. Please note that the values presented here were chosen for their ease of use and scalability to other more realistic circumstances.

Metering Justification Example:

Assumptions:

- 1. Simple whole-building metering coupled with cost-allocation and energy-use tracking can save a building owner/operator 4% of annual energy bills.
- 2. Estimated metering installed cost (assume multiple metering points): \$5,000.
- 3. Required/desired simple payback: 10 years

Formula: Minimum Annual Energy Bill for Economic Meter Installation = (Installed Capital Cost)/(Annual Savings Percentage x Required Payback)

Calculations: $(\$5,000)/(4\% \times 10 \text{ years}) = \$12,500$

Results:

Given the assumptions of 4% annual savings, \$5,000 installed cost, and a 10-year payback, for any building that has an annual energy bill of over \$12,500, it would be economic to meter to achieve a 10-year simple payback.

In addition to the metering installed cost, one should plan for some recurring costs, including meter maintenance and calibration, as well as fees associated with daily data collection and reporting. In the authors' experience and research, it is best estimated that \$50 per month would conservatively cover all of these activities including daily data reporting on the web by an ASP.

8.7 Steps in Meter Planning

The development of a federal metering program is highly dependent on a site's needs, existing metering equipment, and available infrastructure. When it comes to metering, *one size does not fit all*. Below are some very general guidelines identifying the steps and actions necessary for a quality metering program. These guidelines summarize information found in AEC (2002), EPRI (1996), and Sydlowski (1993) where more detailed information can be found.

- Formalize objectives and goals of metering program
 - Identify and confirm goals of stakeholders/users
 - Prioritize goals as near-term, mid-term, and long-term
 - Formalize necessary/expected outcomes
- Develop program structure. Identify data needs, equipment needs, analysis methodologies, and responsible staff.
 - Develop data and analysis needs based on necessary outcomes
 - Develop equipment needs based on data needs
 - Take advantage of existing infrastructure
 - Identify responsible staff, preferably a metering "champion"
- Develop criteria for evaluation metering costs, benefits, and impacts to existing systems, infrastructure, and staff.
 - Determine relative economics of proposal
 - Justify with cost/benefit, return on investment, or payback metric
- Develop a prioritized implementation plan targeting manageable successes
 - Screen opportunities based on success potential
 - Start small/manageable build off success
- Develop a sustainable plan targeting use, updates, calibration, maintenance, and program reinvestment.
 - Maintain your investment
 - Make this success visible
 - Plan for future implementation/reinvestment

Establish metering system goals Determine data Develop performance requirements specifications and receive proposal Identify technical criteria Evaluate costs, compare to project budget, perform Evaluate current cost/benefit analysis infrastructure Evaluate system costs and benefits, compare Pass final to project budget, cost/benefit perform cost/benefit test? analysis No Pass initial Implement metering cost/benefit system test? No Operate and maintain metering system Evaluate goals and update system as necessary

The following flow chart (AEC 2003) is intended to provide additional guidance in meter-system planning.

Figure 8.7.1. Development process for meter system planning

8.8 References

AEC. 2003. Advanced Utility Metering. Under contract NREL/SR-710-33539, Architectural Energy Corporation, Boulder, Colorado.

EPRI. 1996. End-Use Performance Monitoring Handbook. EPRI TR-106960, Electric Power Research Institute, Palo Alto, California

Lewis, J. 2003. Presentation at Federal Energy Management Advanced Metering Workshop, September 25, 2003, Golden Colorado. Jim Lewis, CEO, Obvius, Hillsboro, Oregon. http://www.obvius.com

PECI. 1999. Portable Data Loggers Diagnostic Tools for Energy-Efficient Building Operations. Prepared for the U.S. EPA and U.S. DOE by Portland Energy Conservation, Incorporated, Portland, Oregon.

Sydlowski, R.F. 1993. Advanced Metering Techniques. PNL-8487, Pacific Northwest National Laboratory, Richland, Washington.

Chapter 9 O&M Ideas for Major Equipment Types

9.1 Introduction

At the heart of all O&M lies the equipment. Across the federal sector, this equipment varies greatly in age, size, type, model, fuel used, condition, etc. While it is well beyond the scope of this guide to study all equipment types, we tried to focus our efforts on the more common types prevalent in the federal sector. The objectives of this chapter are the following:

- Present general equipment descriptions and operating principles for the major equipment types.
- Discuss the key maintenance components of that equipment.
- Highlight important safety issues.
- Point out cost and efficiency issues.
- Provide recommended general O&M activities in the form of checklists.
- Where possible, provide case studies.

The checklists provided at the end of each section were complied from a number of resources. These are not presented to replace activities specifically recommended by your equipment vendors or manufacturers. In most cases, these checklists represent industry standard best practices for the given equipment. They are presented here to supplement existing O&M procedures, or to merely serve as reminders of activities that should be taking place. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operations and maintenance.

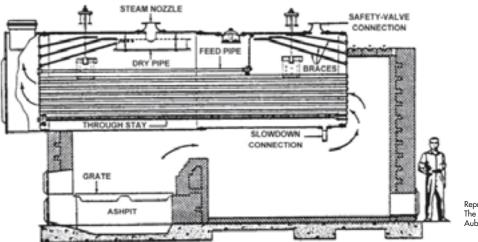
Actions and activities recommended in this guide should only be attempted by trained and certified personnel. If such personnel are not available, the actions recommended here should not be initiated.

9.2 Boilers

9.2.1 Introduction

Boilers are fuel-burning appliances that produce either hot water or steam that gets circulated through piping for heating or process uses.

Boiler systems are major financial investments, yet the methods for protecting these investments vary widely. Proper maintenance and operation of boilers systems is important with regard to efficiency and reliability. Without this attention, boilers can be very dangerous (NBBPVI 2001b).

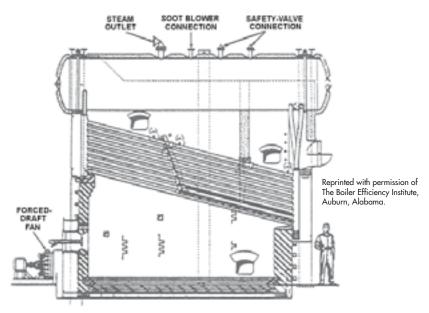

9.2.2 Types of Boilers (Niles and Rosaler 1998)

Boiler designs can be classified in three main divisions – fire-tube boiler, water-tube boiler, and electric boilers.

9.2.2.1 Fire-Tube Boilers

Fire-tube boilers rely on hot gases circulating through the boiler inside tubes that are submerged in water. These gases usually make several passes through these tubes, thereby transferring their heat through the tube walls causing the water to boil on the other side. Fire-tube boilers are generally available in the range 20 through 800 boiler horsepower (bhp) and in pressures up to 150 psi.

Boiler horsepower: As defined, 34.5 lb of steam at 212°F could do the same work (lifting weight) as one horse. In terms of Btu output - 1 bhp equals 33,475 Btu/hr.



Reprinted with permission of The Boiler Efficiency Institute, Auburn, Alabama.

Figure 9.2.1. Horizontal return fire-tube boiler (hot gases pass through tube submerged in water).

9.2.2.2 Water-Tube Boilers

Most high-pressure and large boilers are of this type. It is important to note that the small tubes in the water-tube boiler can withstand high pressure better than the large vessels of a fire-tube boiler. In the water-tube boiler, gases flow over water-filled tubes. These water-filled tubes are in turn connected to large containers called drums.

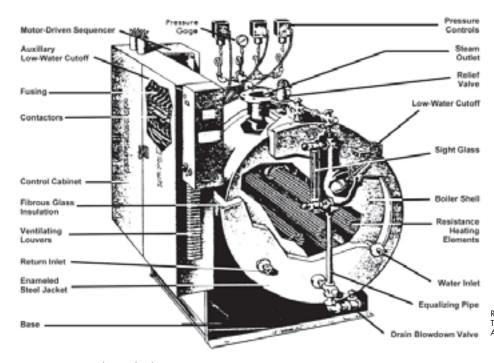


Figure 9.2.2. Longitudinal-drum water-tube boiler (water passes through tubes surrounded by hot gases).

Water-tube boilers are available in sizes ranging from smaller residential type to very large utility class boilers. Boiler pressures range from 15 psi through pressures exceeding 3,500 psi.

9.2.2.3 Electric Boilers

Electric boilers are very efficient sources of hot water or steam, which are available in ratings from 5 to over 50,000 kW. They can provide sufficient heat for any HVAC requirement in applications ranging from humidification to primary heat sources.

Reprinted with permission of The Boiler Efficiency Institute, Auburn, Alabama.

Figure 9.2.3. Electric boiler.

9.2.3 Key Components (Nakonezny 2001)

9.2.3.1 Critical Components

In general, the critical components are those whose failure will directly affect the reliability of the boiler. The critical components can be prioritized by the impact they have on safety, reliability, and performance. These critical pressure parts include:

• **Drums** – The steam drum is the single most expensive component in the boiler. Consequently, any maintenance program must address the steam drum, as well as any other drums, in the convection passes of the boiler. In general, problems in the drums are associated with corrosion. In some instances, where drums have rolled tubes, rolling may produce excessive stresses that can lead to damage in the ligament areas. Problems in the drums normally lead to indications that are seen on the surfaces-either inside diameter (ID) or outside diameter (OD).

Assessment: Inspection and testing focuses on detecting surface indications. The preferred nondestructive examination (NDE) method is wet fluorescent magnetic particle testing (WFMT). Because WFMT uses fluorescent particles that are examined under ultraviolet light, it is more sensitive than dry powder type magnetic particle testing (MT) and it is faster than liquid dye penetrant testing (PT) methods. WFMT should include the major welds, selected attachment welds, and at least some of the ligaments. If locations of corrosion are found, then ultrasonic thickness testing (UTT) may be performed to assess thinning due to metal loss. In rare instances, metallographic replication may be performed.

Reprinted with permission of The National Board of Boiler and Pressure Vessel Inspectors.

Most people do not realize the amount of energy that is contained within a boiler. Take for example, the following illustration by William Axtman: "If you could capture all the energy released when a 30-gallon home hotwater tank flashes into explosive failure at 332°F, you would have enough force to send the average car (weighing 2,500 pounds) to a height of nearly 125 feet. This is equivalent to more than the height of a 14-story apartment building, starting with a lift-off velocity of 85 miles per hour!" (NBBPVI 2001b)

• **Headers** – Boilers designed for temperatures above 900°F (482°C) can have superheater outlet headers that are subject to creep – the plastic deformation (strain) of the header from long-term exposure to temperature and stress. For high temperature headers, tests can include metallographic replication and ultrasonic angle beam shear wave inspections of higher stress weld locations. However, industrial boilers are more typically designed for temperatures less that 900°F (482°C) such that failure is not normally related to creep. Lower temperature headers are subject to corrosion or possible erosion. Additionally, cycles of thermal expansion and mechanical loading may lead to fatigue damage.

Assessment: NDE should include testing of the welds by MT or WFMT. In addition, it is advisable to perform internal inspection with a video probe to assess waterside cleanliness, to note any buildup of deposits or maintenance debris that could obstruct flow, and to determine if corrosion is a problem. Inspected headers should include some of the water circuit headers as well as superheater headers. If a location of corrosion is seen, then UTT to quantify remaining wall thickness is advisable.

• **Tubing** – By far, the greatest number of forced outages in all types of boilers are caused by tube failures. Failure mechanisms vary greatly from the long term to the short term. Superheater tubes

operating at sufficient temperature can fail long term (over many years) due to normal life expenditure. For these tubes with predicted finite life, Babcock & Wilcox (B&W) offers the NOTIS® test and remaining life analysis. However, most tubes in the industrial boiler do not have a finite life due to their temperature of operation under normal conditions. Tubes are more likely to fail because of abnormal deterioration such as water/steam-side deposition retarding heat transfer, flow obstructions, tube corrosion (ID and/or OD), fatigue, and tube erosion.

Assessment: Tubing is one of the components where visual examination is of great importance because many tube damage mechanisms lead to visual signs such as distortion, discoloration, swelling, or surface damage. The primary NDE method for obtaining data used in tube assessment is contact UTT for tube thickness measurements. Contact UTT is done on accessible tube surfaces by placing the UT transducer onto the tube using a couplant, a gel or fluid that transmits the UT sound into the tube. Variations on standard contact UTT have been developed due to access limitations. Examples are internal rotating inspection system (IRIS)-based techniques in which the UT signal is reflected from a high rpm rotating mirror to scan tubes from the ID – especially in the area adjacent to drums; and B&W's immersion UT where a multiple transducer probe is inserted into boiler bank tubes from the steam drum to provide measurements at four orthogonal points. These systems can be advantageous in the assessment of pitting.

• Piping

- Main Steam For lower temperature systems, the piping is subject to the same damage as
 noted for the boiler headers. In addition, the piping supports may experience deterioration
 and become damaged from excessive or cyclical system loads.
 - Assessment: The NDE method of choice for testing of external weld surfaces is WFMT. MT and PT are sometimes used if lighting or pipe geometry make WFMT impractical. Non-drainable sections, such as sagging horizontal runs, are subject to internal corrosion and pitting. These areas should be examined by internal video probe and/or UTT measurements. Volumetric inspection (i.e., ultrasonic shear wave) of selected piping welds may be included in the NDE; however, concerns for weld integrity associated with the growth of subsurface cracks is a problem associated with creep of high temperature piping and is not a concern on most industrial installations.
- Feedwater A piping system often overlooked is feedwater piping. Depending upon the operating parameters of the feedwater system, the flow rates, and the piping geometry, the pipe may be prone to corrosion or flow assisted corrosion (FAC). This is also referred to as erosion-corrosion. If susceptible, the pipe may experience material loss from internal surfaces near bends, pumps, injection points, and flow transitions. Ingress of air into the system can lead to corrosion and pitting. Out-of-service corrosion can occur if the boiler is idle for long periods.

Assessment: Internal visual inspection with a video probe is recommended if access allows. NDE can include MT, PT, or WFMT at selected welds. UTT should be done in any location where FAC is suspected to ensure there is not significant piping wall loss.

• **Deaerators** – Overlooked for many years in condition assessment and maintenance inspection programs, deaerators have been known to fail catastrophically in both industrial and utility plants. The damage mechanism is corrosion of shell welds, which occurs on the ID surfaces.

Assessment: Deaerators' welds should have a thorough visual inspection. All internal welds and selected external attachment welds should be tested by WFMT.

9.2.3.2 Other Components (Williamson-Thermoflo Company 2001)

• Air openings

Assessment: Verify that combustion and ventilation air openings to the boiler room and/or building are open and unobstructed. Check operation and wiring of automatic combustion air dampers, if used. Verify that boiler vent discharge and air intake are clean and free of obstructions.

• Flue gas vent system

Assessment: Visually inspect entire flue gas venting system for blockage, deterioration, or leakage. Repair any joints that show signs of leakage in accordance with vent manufacturer's instructions. Verify that masonry chimneys are lined, lining is in good condition, and there are not openings into the chimney.

• Pilot and main burner flames

Assessment: Visually inspect pilot burner and main burner flames.

- Proper pilot flame
 - Blue flame.
 - Inner cone engulfing thermocouple.
 - Thermocouple glowing cherry red.
- Improper pilot flame
 - Overfired Large flame lifting or blowing past thermocouple.
 - Underfired Small flame. Inner cone not engulfing thermocouple.
 - Lack of primary air Yellow flame tip.
 - Incorrectly heated thermocouple.
- Check burner flames-Main burner
- Proper main burner flame

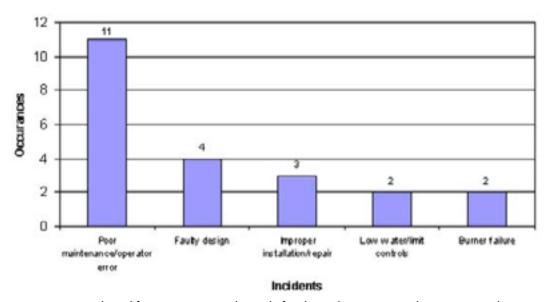
• Yellow-orange streaks may appear (caused by dust)

- Improper main burner flame
 - Overfired Large flames.
 - Underfired Small flames.
 - Lack of primary air Yellow tipping on flames (sooting will occur).

• Boiler heating surfaces

Assessment: Use a bright light to inspect the boiler flue collector and heating surfaces. If the vent pipe or boiler interior surfaces show evidence of soot, clean boiler heating surfaces. Remove the flue collector and clean the boiler, if necessary, after closer inspection of boiler heating surfaces. If there is evidence of rusty scale deposits on boiler surfaces, check the water piping and control system to make sure the boiler return water temperature is properly maintained. Reconnect vent and draft diverter. Check inside and around boiler for evidence of any leaks from the boiler. If found, locate source of leaks and repair.

Burners and base


Assessment: Inspect burners and all other components in the boiler base. If burners must be cleaned, raise rear of each burner to release from support slot, slide forward, and remove. Then brush and vacuum the burners thoroughly, making sure all ports are free of debris. Carefully replace all burners, making sure burner with pilot bracket is replaced in its original position and all burners are upright (ports up). Inspect the base insulation.

9.2.4 Safety Issues (NBBPVI 2001c)

At atmospheric pressure, 1 ft³ of water converted to steam expands to occupy 1,600 ft³ of space. If this expansion takes place in a vented tank, after which the vent is closed, the condensing steam will create a vacuum with an external force on the tank of 900 tons! Boiler operators must understand this concept (NTT 1996).

Boiler safety is a key objective of the National Board of Boiler and Pressure Vessel Inspectors. This organization tracks and reports on boiler safety and "incidents" related to boilers and pressure vessels that occur each year. The figure below details the 1999 boiler incidents by major category. It is important to note that the number one incident category resulting in injury was poor maintenance/operator error. Furthermore, statistics tracking loss-of-life incidents reported that in 1999, three of seven boiler-related deaths were attributed to poor maintenance/operator

error. The point of relaying this information is to suggest that through proper maintenance and operator training these incidents may be reduced.

Figure 9.2.4. Adapted from 1999 National Board of Boiler and Pressure Vessel Inspectors incident report summary.

Boiler inspections should be performed at regular intervals by certified boiler inspectors. Inspections should include verification and function of all safety systems and procedures as well as operator certification review.

9.2.5 Cost and Energy Efficiency (Dyer and Maples 1988)

9.2.5.1 Efficiency, Safety, and Life of the Equipment

It is impossible to change the efficiency without changing the safety of the operation and the resultant life of the equipment, which in turn affects maintenance cost. An example to illustrate this relation between efficiency, safety, and life of the equipment is shown in the figure below. The temperature distribution in an efficient-operated boiler is shown as the solid line. If fouling develops on the waterside due to poor water quality control, it will result in a temperature increase of the hot gases on the fireside as shown by the dashed line. This fouling will result in an increase in stack temperature, thus decreasing the efficiency of the boiler. A metal failure will also change the life of the boiler, since fouling material will allow corrosion to occur, leading to increased maintenance cost and decreased equipment reliability and safety.

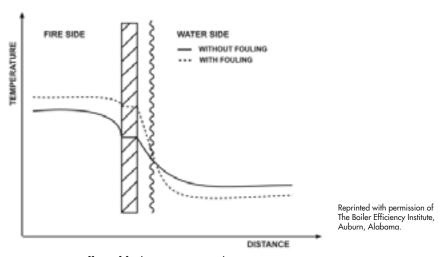


Figure 9.2.5. Effect of fouling on water side.

9.2.5.2 Results Best Practices

In a study conducted by the Boiler Efficiency Institute in Auburn, Alabama, researchers have developed eleven ways to improve boiler efficiency with important reasons behind each action.

- **Reduce excess air** Excess air means there is more air for combustion than is required. The extra air is heated up and thrown away. The most important parameter affecting combustion efficiency is the air/fuel ratio.
 - Symptom The oxygen in the air that is not used for combustion is discharged in the flue gas, therefore, a simple measurement of oxygen level in the exhaust gas tells us how much air is being used. **Note**: It is worth mentioning the other side of the spectrum. The so called "deficient air" must be avoided as well because (1) it decreases efficiency, (2) allows deposit of soot on the fire side, and (3) the flue gases are potentially explosive.
 - Action Required Determine the combustion efficiency using dedicated or portable combustion analysis equipment. Adjustments for better burning
 - Cleaning

• Swirl at burner inlet

New tips/orifices

Atomizing pressure

- Damper repair
- Control repair
- Refractory repair
- Fuel pressure
- Furnace pressure

- Fuel temperature
- Burner position
- Bed thickness
- Ratio under/overfire air
- Undergrate air distribution.
- Install waste heat recovery The magnitude of the stack loss for boilers without recovery is about 18% on gas-fired and about 12% for oil- and coal-fired boilers. A major problem with heat recovery in flue gas is corrosion. If flue gas is cooled, drops of acid condense at the acid dew temperature. As the temperature of the flue gas is dropped further, the water dew point is reached at which water condenses. The water mixes with the acid and reduces the severity of the corrosion problem.
 - Symptom Flue gas temperature is the indicator that determines whether an economizer or air heater is needed. It must be remembered that many factors cause high flue gas temperature (i.e., fouled waterside or fireside surfaces, excess air, etc.).
 - Action Required If flue gas temperature exceeds minimum allowable temperature by 50°F or more, a conventional economizer may be economically feasible. An unconventional recovery device should be considered if the low-temperature waste heat saved can be utilized in heating water or air. **Cautionary Note**: A high flue gas temperature may be a sign of poor heat transfer resulting from scale or soot deposits. Boilers should be cleaned and tuned before considering the installation of a waste heat recovery system.
- Reduce scale and soot deposits Scale or deposits serve as an insulator, resulting in more heat from the flame going up the stack rather than to the water due to these deposits. Any scale formation has a tremendous potential to decrease the heat transfer.
 - Symptom The best indirect indicator for scale or deposit build-up is the flue gas temperature. If at the same load and excess air the flue gas temperature rises with time, the effect is probably due to scale or deposits.
 - Action Required Soot is caused primarily by incomplete combustion. This is probably due to deficient air, a fouled burner, a defective burner, etc. Adjust excess air. Make repairs as necessary to eliminate smoke and carbon monoxide.

Scale formation is due to poor water quality. First, the water must be soft as it enters the boiler. Sufficient chemical must be fed in the boiler to control hardness.

- **Reduce blowdown** Blowdown results in the energy in the hot water being lost to the sewer unless energy recovery equipment is used. There are two types of blowdowns. Mud blow is designed to remove the heavy sludge that accumulates at the bottom of the boiler. Continuous or skimming blow is designed to remove light solids that are dissolved in the water.
 - Symptom Observe the closeness of the various water quality parameters to the tolerances stipulated for the boiler per manufacturer specifications and check a sample of mud blowdown to ensure blowdown is only used for that purpose. Check the water quality in the boiler using standards chemical tests.

Scale deposits on the water side and soot deposits on the fire side of a boiler not only act as insulators that reduce efficiency, but also cause damage to the tube structure due to overheating and corrosion.

- Action Required Conduct proper pre-treatment of the water by ensuring makeup is softened. Perform a "mud test" each time a mud blowdown is executed to reduce it to a minimum. A test should be conducted to see how high total dissolved solids (TDS) in the boiler can be carried without carryover.
- Recover waste heat from blowdown Blowdown contains energy, which can be captured by a waste heat recovery system.
 - Symptom and Action Required Any boiler with a significant makeup (say 5%) is a candidate for blowdown waste heat recovery.

Typical uses for waste heat include:

- Heating of combustion air
- Makeup water heating
- Boiler feedwater heating
- Appropriate process water heating
- Domestic water heating.

• Stop dynamic operation on applicable boilers

- Symptom Any boiler which either stays off a significant amount of time or continuously varies in firing rate can be changed to improve efficiency.
- Action Required For boilers which operate on and off, it may be possible to reduce the firing rate by changing burner tips. Another point to consider is whether more boilers are being used than necessary.
- **Reduce line pressure** Line pressure sets the steam temperature for saturated steam.
 - Symptom and Action Required Any steam line that is being operated at a pressure higher than the process requirements offers a potential to save energy by reducing steam line pressure to a minimum required pressure determined by engineering studies of the systems for different seasons of the year.
- **Cogenerate** This refers to correct utilization of steam pressure. A boiler provides steam to a turbine, which in turn, is coupled to an electric generator. In this process, all steam exhaust from the turbine must be fully utilized in a process requirement.
- Operate boilers at peak efficiency Plants having two or more boilers can save energy by load management such that each boiler is operated to obtain combined peak efficiency.
 - Symptom and Action Required Improved efficiency can be obtained by proper load selection, if operators determine firing schedule by those boilers, which operate "smoothly."
- **Preheat combustion air** Since the boiler and stack release heat, which rises to the top of the boiler room, the air ducts can be arranged so the boiler is able to draw the hot air down back to the boiler.
 - Symptom Measure vertical temperature in the boiler room to indicate magnitude of stratification of the air.
 - Action Required Modify the air circulation so the boiler intake for outside air is able to draw from the top of the boiler room.
- **Switch from steam to air atomization** The energy to produce the air is a tiny fraction of the energy in the fuel, while the energy in the steam is usually 1% or more of the energy in the fuel.
 - Symptom Any steam-atomized burner is a candidate for retrofit.
 - Action Required Check economics to see if satisfactory return on investment is available.

Reprinted with permission of the National Board of Boiler and Pressure Vessel Inspectors.

General Requirements for a Safe and Efficient Boiler Room

- 1. Keep the boiler room clean and clear of all unnecessary items. The boiler room should not be considered an all-purpose storage area. The burner requires proper air circulation in order to prevent incomplete fuel combustion. Use boiler operating log sheets, maintenance records, and the production of carbon monoxide. The boiler room is for the boiler!
- 2. Ensure that all personnel who operate or maintain the boiler room are properly trained on all equipment, controls, safety devices, and up-to-date operating procedures.
- 3. Before start-up, ensure that the boiler room is free of all potentially dangerous situations, like flammable materials, mechanical, or physical damage to the boiler or related equipment. Clear intakes and exhaust vents; check for deterioration and possible leaks.
- 4. Ensure a thorough inspection by a properly qualified inspector.
- 5. After any extensive repair or new installation of equipment, make sure a qualified boiler inspector re-inspects the entire system.
- 6. Monitor all new equipment closely until safety and efficiency are demonstrated.
- 7. Use boiler operating log sheets, maintenance records, and manufacturer's recommendations to establish a preventive maintenance schedule based on operating conditions, past maintenance, repair, and replacement that were performed on the equipment.
- 8. Establish a checklist for proper startup and shutdown of boilers and all related equipment according to manufacturer's recommendations.
- 9. Observe equipment extensively before allowing an automating operation system to be used with minimal supervision.
- 10. Establish a periodic preventive maintenance and safety program that follows manufacturer's recommendations.

9.2.6 Maintenance of Boilers (NBBPVI 2001a)

A boiler efficiency improvement program must include two aspects: (1) action to bring the boiler to peak efficiency and (2) action to maintain the efficiency at the maximum level. Good maintenance and efficiency start with having a working knowledge of the components associated with the boiler, keeping records, etc., and end with cleaning heat transfer surfaces, adjusting the air-to-fuel ratio, etc.

9.2.7 Diagnostic Tools

- Combustion analyzer A combustion analyzer samples, analyzes, and reports the combustion efficiency of most types of combustion equipment including boilers, furnaces, and water heaters. When properly maintained and calibrated, these devices provide an accurate measure of combustion efficiency from which efficiency corrections can be made. Combustion analyzers come in a variety of styles from portable units to dedicated units.
- **Thermography** An infrared thermometer or camera allows for an accurate, non-contact assessment of temperature. Applications for boilers include insulation assessments on boilers, steam,

and condensate-return piping. Other applications include motor/bearing temperature assessments on feedwater pumps and draft fan systems. More information on thermography can be found in Chapter 6.

9.2.8 Case Studies (NBBPVI 2001a)

Boiler Maintenance and its Impact

A 300-hp boiler installed at a public school in Canada was valued at about \$100,000. After a maintenance worker noticed water dripping from a steam valve, the boiler was shut down for inspection. During the inspection, insulation was removed. The boiler inspector concluded that water had been leaking into the insulation for so long that corrosion had developed completely around the boiler. The inspector could actually penetrate the boiler with a pocketknife. The boiler was a total loss-yet less than \$5 worth of packing for the valve, applied at the right time, would have saved the boiler.

Lesson Learned: Operators and maintenance technicians must conduct a visual inspection of a boiler, especially during start-ups and running operations. Maintenance personnel must follow and perform all maintenance requirements, to the letter, per manufacturer requirements. Operators must report any anomalies as soon as possible, so they can be taken care of before the problem grows beyond repair.

Combustion Efficiency of a Natural Gas Boiler (OIT 1995)

A study of combustion efficiency of a 300 hp natural-gas-fired heating boiler was completed. Flue gas measurements were taken and found a temperature of 400°F and a percentage of oxygen of 6.2%. An efficient, well-tuned boiler of this type and size should have a percent oxygen reading of about 2% – corresponding to about 10% excess air. This extra oxygen in the flue gas translates into excess air (and its heat) traveling out of the boiler system – a waste of energy.

The calculated savings from bringing this boiler to the recommended oxygen/excess air level was about \$730 per year. The cost to implement this action included the purchase of an inexpensive combustion analyzer costing \$500. Thus, the cost savings of \$730 would pay for the implementation cost of \$500 in about 8 months. Added to these savings is the ability to tune other boilers at the site with this same analyzer.

9.2.9 Boilers Checklist

Description	Comments	Maintenance Frequency				
		Daily	Weekly	Monthly		
Boiler use/sequencing	Turn off/sequence unnecessary boilers	X				
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X				
Follow manufacturer's recommended procedures in lubricating all components	Compare temperatures with tests per- formed after annual cleaning	X				
Check steam pressure	Is variation in steam pressure as expected under different loads? Wet steam may be produced if the pressure drops too fast	X				
Check unstable water level	Unstable levels can be a sign of contaminates in feedwater, overloading of boiler, equipment malfunction	X				
Check burner	Check for proper control and cleanliness	X				
Check motor condition temperatures	Check for proper function	X				
Check air temperatures in boiler room	Temperatures should not exceed or drop below design limits	X				
Boiler blowdown	Verify the bottom, surface and water column blow downs are occurring and are effective	X				
Boiler logs	Keep daily logs on: Type and amount of fuel used Flue gas temperature Makeup water volume Steam pressure, temperature, and amount generated Look for variations as a method of fault detection	X				
Check oil filter assemblies	Check and clean/replace oil filters and strainers	X				
Inspect oil heaters	Check to ensure that oil is at proper temperature prior to burning	X				
Check boiler water treatment	Confirm water treatment system is functioning properly	X				
Check flue gas temperatures and composition	Measure flue gas composition and temperatures at selected firing positions - recommended O2% and CO2% Fuel O2 % CO2% Natural gas 1.5 10 No. 2 fuel oil 2.0 11.5 No. 6 fuel oil 2.5 12.5					
	Note: percentages may vary due to fuel composition variations		X			

Boilers Checklist (contd)

		Maintenance Frequency				
Description	Comments	Daily	Weekly		Annually	
Check all relief valves	Check for leaks		X			
Check water level control	Stop feedwater pump and allow control to stop fuel flow to burner. Do not allow water level to drop below recommended level.		X			
Check pilot and burner assemblies	Clean pilot and burner following manufacturer's guidelines. Examine for mineral or corrosion buildup.		X			
Check boiler operating characteristics	Stop fuel flow and observe flame failure. Start boiler and observe characteristics of flame.		X			
Inspect system for water/ steam leaks and leakage opportunities	Look for: leaks, defective valves and traps, corroded piping, condition of insulation		X			
Inspect all linkages on combustion air dampers and fuel valves	Check for proper setting and tightness		X			
Inspect boiler for air leaks	Check damper seals		X			
Check blowdown and water treatment procedures	Determine if blowdown is adequate to prevent solids buildup			X		
Flue gases	Measure and compare last month's readings flue gas composition over entire firing range			X		
Combustion air supply	Check combustion air inlet to boiler room and boiler to make sure openings are adequate and clean			X		
Check fuel system	Check pressure gauge, pumps, filters and transfer lines. Clean filters as required.			X		
Check belts and packing glands	Check belts for proper tension. Check packing glands for compression leakage.			X		
Check for air leaks	Check for air leaks around access openings and flame scanner assembly.			X		
Check all blower belts	Check for tightness and minimum slippage.			X		
Check all gaskets	Check gaskets for tight sealing, replace if do not provide tight seal			X		
Inspect boiler insulation	Inspect all boiler insulation and casings for hot spots			X		
Steam control valves	Calibrate steam control valves as specified by manufacturer			X		
Pressure reducing/regulating valves	Check for proper operation			X		

Boilers Checklist (contd)

Description	Comments	Maintenance Frequency				
		Daily	Weekly		Annually	
Perform water quality test	Check water quality for proper chemical balance			X		
Clean waterside surfaces	Follow manufacturer's recommendation on cleaning and preparing waterside surfaces				X	
Clean fireside	Follow manufacturer's recommendation on cleaning and preparing fireside surfaces				X	
Inspect and repair refractories on fireside	Use recommended material and procedures				X	
Relief valve	Remove and recondition or replace				X	
Feedwater system	Clean and recondition feedwater pumps. Clean condensate receivers and deaeration system				X	
Fuel system	Clean and recondition system pumps, filters, pilot, oil preheaters, oil storage tanks, etc.				X	
Electrical systems	Clean all electrical terminals. Check electronic controls and replace any defective parts.				X	
Hydraulic and pneumatic valves	Check operation and repair as necessary				X	
Flue gases	Make adjustments to give optimal flue gas composition. Record composition, firing position, and temperature.				X	
Eddy current test	As required, conduct eddy current test to assess tube wall thickness				X	

9.2.10 References

Dyer, D.F. and G. Maples. 1988. Boiler Efficiency Improvement. Boiler Efficiency Institute, Auburn, Alabama.

Nakoneczny, G.J. July 1, 2001. *Boiler Fitness Survey for Condition Assessment of Industrial Boilers*, BR-1635, Babcock & Wilcox Company [Online report]. Available URL: http://www.babcock.com/pgg/tt/pdf/BR-1635.pdf.

Niles, R.G. and R.C. Rosaler. 1998. HVAC Systems and Components Handbook. 2nd ed. McGraw-Hill, New York.

NTT. 1996. Boilers: An Operators Workshop. National Technology Transfer, Inc. Englewood, Colorado.

OIT. 1995. Modern Industrial Assessments: A Training Manual. Industrial Assessment Manual from the Office of Productivity and Energy Assessment at the State University of New Jersey, Rutgers, for the U.S. Department of Energy Office of Industrial Technology.

The National Board of Boiler and Pressure Vessel Inspectors (NBBPVI). April 15, 2001a. School Boiler Maintenance Programs: How Safe are The Children. National Board BULLETIN, Fall 1997 [On-line report]. Available URL: http://www.nationalboard.org/Publications/Bulletin/FA97.pdf.

The National Board of Boiler and Pressure Vessel Inspectors (NBBPVI). April 15, 2001b. *Is preventive maintenance cost effective?* National Board BULLETIN, Summer 2000 [Online report]. Available URL: http://www.nationalboard.org/Publications/Bulletin/SU00.pdf.

The National Board of Boiler and Pressure Vessel Inspectors (NBBPVI). April 15, 2001c. 1999 Incident Report. National Board BULLETIN, Summer 2000 [Online report]. Available URL: http://www.nationalboard.org/Publications/Bulletin/SU00.pdf.

Williamson-Thermoflo Company. July 12, 2001. GSA Gas Fired Steam Boilers: Boiler Manual. Part Number 550-110-738/0600, Williamson-Thermoflo [Online report]. Available URL: http://www.williamson-thermoflo.com/pdf_files/550-110-738.pdf.

9.3 Steam Traps

9.3.1 Introduction

Steam traps are automatic valves that release condensed steam (condensate) from a steam space while preventing the loss of live steam. They also remove non-condensable gases from the steam space. Steam traps are designed to maintain steam energy efficiency for performing specific tasks such as heating a building or maintaining heat for process. Once steam has transferred heat through a process and becomes hot water, it is removed by the trap from the steam side as condensate and either returned to the boiler via condensate return lines or discharged to the atmosphere, which is a wasteful practice (Gorelik and Bandes 2001).

9.3.2 Types of Steam Traps (DOE 2001a)

Steam traps are commonly classified by the physical process causing them to open and close. The three major categories of steam traps are 1) mechanical, 2) thermostatic, and 3) thermodynamic. In addition, some steam traps combine characteristics of more than one of these basic categories.

9.3.2.1 Mechanical Steam Trap

The operation of a mechanical steam trap is driven by the difference in density between condensate and steam. The denser condensate rests on the bottom of any vessel containing the two fluids. As additional condensate is generated, its level in the vessel will rise. This action is transmitted to a valve via either a "free float" or a float and connecting levers in a mechanical steam trap. One common type of mechanical steam trap is the inverted bucket trap shown in Figure 9.3.1. Steam entering the submerged bucket causes it to rise upward and seal the valve against the valve seat. As the steam condenses inside the bucket or if condensate is predominately entering the bucket, the weight of the bucket will cause it to sink and pull the valve away from the valve seat. Any air or other non-condensable gases entering the bucket will cause it to float and the valve to close. Thus, the top of the bucket has a small hole to allow non-condensable gases to escape. The hole must be relatively small to avoid excessive steam loss.

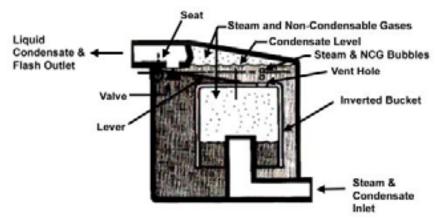


Figure 9.3.1. Inverted bucket steam trap.

9.3.2.2 Thermostatic Steam Trap

As the name implies, the operation of a thermostatic steam trap is driven by the difference in temperature between steam and sub-cooled condensate. Valve actuation is achieved via expansion and contraction of a bimetallic element or a liquid-filled bellows. Bimetallic and bellows thermostatic traps are shown in Figures 9.3.2 and 9.3.3. Although both types of thermostatic traps close when exposure to steam expands the bimetallic element or bellows, there are important differences in design and operating characteristics. Upstream pressure works to open the valve in a bimetallic trap, while expansion of the bimetallic element works in the opposite direction. Note that changes in the downstream pressure will affect the temperature at which the valve opens or closes. In addition, the nonlinear relationship between steam pressure and temperature requires careful design of the bimetallic element for proper response at different operating pressures. Upstream and downstream pressures have the opposite affect in a bellows trap; an increase in upstream pressure tends to close the valve and vice versa. While higher temperatures still work to close the valve, the relationship between temperature and bellows expansion can be made to vary significantly by changing the fluid inside the bellows. Using water within the bellows results in nearly identical expansion as steam temperature and pressure increase, because pressure inside and outside the bellows is nearly balanced.

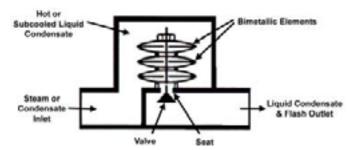


Figure 9.3.2. Bimetallic steam trap.

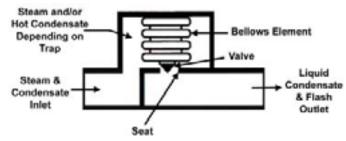


Figure 9.3.3. Bellows steam trap.

In contrast to the inverted bucket trap, both types of thermostatic traps allow rapid purging of air at startup. The inverted bucket trap relies on fluid density differences to actuate its valve. Therefore, it cannot distinguish between air and steam and must purge air (and some steam) through a small hole. A thermostatic trap, on the other hand, relies on temperature differences to actuate its valve. Until warmed by steam, its valve will remain wide open, allowing the air to easily leave. After the trap warms up, its valve will close, and no continuous loss of steam through a purge hole occurs. Recognition of this deficiency with inverted bucket traps or other simple mechanical traps led to the development of float and thermostatic traps. The condensate release valve is driven by the level of condensate inside the trap, while an air release valve is driven by the temperature of the trap. A float and thermostatic trap, shown in Figure 9.3.4, has a float that controls the condensate valve and a

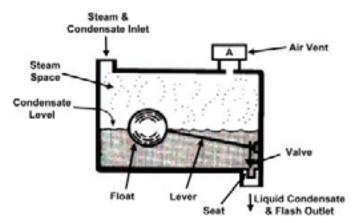


Figure 9.3.4. Float and thermostatic steam trap.

thermostatic element. When condensate enters the trap, the float raises allowing condensate to exit. The thermostatic element opens only if there is a temperature drop around the element caused by air or other non-condensable gases.

9.3.2.3 Thermodynamic Steam Traps

Thermodynamic trap valves are driven by differences in the pressure applied by steam and condensate, with the presence of steam or condensate within the trap being affected by the design of the trap and its impact on local flow velocity and pressure. Disc, piston, and lever designs are three types of thermodynamic traps with similar operating principles; a disc trap is shown in Figure 9.3.5. When sub-cooled condensate enters the trap, the increase in pressure lifts the disc off its valve seat and allows the condensate to flow into the chamber and out of the trap. The narrow inlet port results in a localized increase in velocity and decrease in pressure as the condensate flows through the trap, following the first law of thermodynamics and the Bernoulli equation. As the condensate entering the trap increases in temperature, it will eventually flash to steam because of the localized pressure drop just described. This increases the velocity and decreases the pressure even further, causing the disc to snap close against the seating surface. The moderate pressure of the flash steam on top of the disc acts on the entire disc surface, creating a greater force than the higher pressure steam and condensate at the inlet, which acts on a much smaller portion on the opposite side of the disc. Eventually, the disc chamber will cool, the flash steam will condense, and inlet condensate will again have adequate pressure to lift the disc and repeat the cycle.

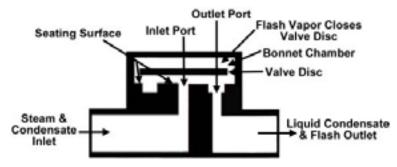


Figure 9.3.5. Disc steam trap.

9.3.2.4 Other Steam Traps

Another type of steam trap is the fixed orifice steam trap. Fixed orifice traps contain a set orifice in the trap body and continually discharge condensate. They are said to be self-regulating. As the rate of condensation decreases, the condensate temperature will increase, causing a throttling in the orifice and reducing capacity due to steam flashing on the downstream side. An increased load will decrease flashing and the orifice capacity will become greater (Gorelik and Bandes 2001). Orifice steam traps function best in situations with relatively constant steam loads. In situations where steam loads vary, the orifice trap either is allowing steam to escape or condensate to back up into the system. Varying loads, such as those found in most steam heating systems, are usually not good candidates for orifice steam traps. Before an orifice trap is specified, a careful analysis of appropriateness is recommended – preferably done by someone not selling orifice steam traps!

9.3.3 Safety Issues

When steam traps cause a backup of condensate in a steam main, the condensate is carried along with the steam. It lowers steam quality and increases the potential for water hammer. Not only will energy be wasted, equipment can be destroyed. Water hammer occurs as slugs of water are picked up at high speeds in a poorly designed steam main, in pipe coils, or where there is a lift after a steam trap. In some systems, the flow may be at 120 feet per second, which is about 82 mph. As the slug of condensate is carried along the steam line, it reaches an obstruction, such as a bend or a valve, where it is suddenly stopped. The effect of this impact can be imagined. It is important to note that the damaging effect of water hammer is due to steam velocity, not steam pressure. It can be as damaging in low-pressure systems as it can in high. This can actually produce a safety hazard, as the force of water hammer can blow out a valve or a strainer. Condensate in a steam system can be very destructive. It can cause valves to become wiredrawn and unable to hold temperatures as required. Little beads of water in a steam line can eventually cut any small orifices the steam normally passes through. Wiredrawing will eventually cut enough of the metal in a valve seat that it prevents adequate closure, producing leakage in the system (Gorelik and Bandes 2001).

9.3.4 Cost and Energy Efficiency (DOE 2001a)

Monitoring and evaluation equipment does not save any energy directly, but identifies traps that have failed and whether failure has occurred in an open or closed position. Traps failing in an open position allow steam to pass continuously, as long as the system is energized. The rate of energy loss can be estimated based on the size of the orifice and system steam pressure using the relationship illustrated in Figure 9.3.6. This figure is derived from Grashof's equation for steam discharge through an orifice (Avallone and Baumeister 1986) and assumes the trap is energized (leaks) the entire year, all steam leak energy is lost, and that makeup water is available at an average temperature of 60°F. Boiler losses are not included in Figure 9.3.6, so must be accounted for separately. Thus, adjustments from the raw estimate read from this figure must be made to account for less than full-time steam supply and for boiler losses.

The maximum steam loss rate occurs when a trap fails with its valve stuck in a fully opened position. While this failure mode is relatively common, the actual orifice size could be any fraction of the fully opened position. Therefore, judgment must be applied to estimate the orifice size associated with a specific malfunctioning trap. Lacking better data, assuming a trap has failed with an orifice size equivalent to one-half of its fully-opened condition is probably prudent.

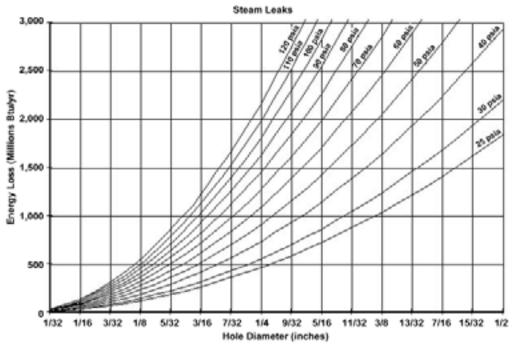


Figure 9.3.6. Energy loss from leaking steam traps.

9.3.4.1 Other Costs

Where condensate is not returned to the boiler, water losses will be proportional to the energy losses noted above. Feedwater treatment costs (i.e., chemical to treat makeup water) will also be proportionately increased. In turn, an increase in make-up water increases the blowdown requirement and associated energy and water losses. Even where condensate is returned to the boiler, steam bypassing a trap may not condense prior to arriving at the deaerator, where it may be vented along with the non-condensable gases. Steam losses also represent a loss in steamheating capacity, which

The use of Figure 9.3.6 is illustrated via the following example. Inspection and observation of a trap led to the judgment that it had failed in the fully open position and was blowing steam. Manufacturer data indicated that the actual orifice diameter was 3/8 inch. The trap operated at 60 psia and was energized for 50% of the year. Boiler efficiency was estimated to be 75%. Calculation of annual energy loss for this example is illustrated below.

Estimating steam loss using Figure 9.3.6.

Assume: 3/8-inch diameter orifice steam trap, 50% blocked, 60 psia saturated steam system, steam system energized 4,380 h/yr (50% of year), 75% boiler efficiency.

- Using Figure 9.3.6 for 3/8-inch orifice and 60 psia steam, steam loss = 2,500 million Btu/yr.
- Assuming trap is 50% blocked, annual steam loss estimate = 1,250 million Btu/yr.
- Assuming steam system is energized 50% of the year, energy loss = 625 million Btu/yr.
- Assuming a fuel value of \$5.00 per million cubic feet (1 million Btu boiler input).

Annual fuel loss including boiler losses = [(625 million Btu/yr)/(75% efficiency) (\$5.00/million Btu)] = \$4,165/yr.

could result in an inability to maintain the indoor design temperature on winter days or reduce production capacity in process heating applications. Traps that fail closed do not result in energy or water losses, but can also result in significant capacity reduction (as the condensate takes up pipe cross-sectional area that otherwise would be available for steam flow). Of generally more critical concern is the physical damage that can result from the irregular movement of condensate in a two-phase system, a problem commonly referred to as "water hammer."

9.3.5 Maintenance of Steam Traps

Considering that many federal sites have hundreds if not thousands of traps, and that one malfunctioning steam trap can cost thousands of dollars in wasted steam per year, steam trap maintenance should receive a constant and dedicated effort.

Excluding design problems, two of the most common causes of trap failure are oversizing and dirt.

- Oversizing causes traps to work too hard. In some cases, this can result in blowing of live steam.
 As an example, an inverted bucket trap can lose its prime due to an abrupt change in pressure.
 This will cause the bucket to sink, forcing the valve open.
- Dirt is always being created in a steam system. Excessive build-up can cause plugging or prevent a valve from closing. Dirt is generally produced from pipe scale or from over-treating of chemicals in a boiler.

9.3.5.1 Characteristics of Steam Trap Failure (Gorelik and Bandes 2001)

- Mechanical Steam Trap (Inverted Bucket Steam Trap) Inverted bucket traps have a "bucket" that rises or falls as steam and/or condensate enters the trap body. When steam is in the body, the
- bucket rises closing a valve. As condensate enters, the bucket sinks down, opening a valve and allowing the condensate to drain. Inverted bucket traps are ideally suited for water-hammer conditions but may be subject to freezing in low temperature climates if not insulated. Usually, when this trap fails, it fails open. Either the bucket loses its prime and sinks or impurities in the system may prevent the valve from closing.

Checklist Indicating Possible Steam Trap Failure

- Abnormally warm boiler room.
- Condensate received venting steam.
- Condensate pump water seal failing prematurely.
- Overheating or underheating in conditioned space.
- Boiler operating pressure difficult to maintain.
- Vacuum in return lines difficult to maintain.
- Water hammer in steam lines.
- Steam in condensate return lines.
- Higher than normal energy bill.
- Inlet and outlet lines to trap nearly the same temperature.
- Thermostatic Steam Trap (Bimetallic and Bellows Steam Traps) Thermostatic traps have, as the main operating element, a metallic corrugated bellows that is filled with an alcohol mixture that has a boiling point lower than that of water. The bellows will contract when in contact with condensate and expand when steam is present. Should a heavy condensate load occur, such as in start-up, the bellows will remain in a contracted state, allowing condensate to flow continuously. As steam builds up, the bellows will close. Therefore, there will be moments when this trap will act as a "continuous flow" type while at other times, it will act intermittently as it opens and closes to condensate and steam, or it may remain totally closed. These traps adjust automatically

- to variations of steam pressure but may be damaged in the presence of water hammer. They can fail open should the bellows become damaged or due to particulates in the valve hole, preventing adequate closing. There can be times when the tray becomes plugged and will fail closed.
- Thermodynamic Steam Trap (Disc Steam Trap) Thermodynamic traps have a disc that rises and falls depending on the variations in pressure between steam and condensate. Steam will tend to keep the disc down or closed. As condensate builds up, it reduces the pressure in the upper chamber and allows the disc to move up for condensate discharge. This trap is a good general type trap where steam pressures remain constant. It can handle superheat and "water hammer" but is not recommended for process, since it has a tendency to air-bind and does not handle pressure fluctuations well. A thermodynamic trap usually fails open. There are other conditions that may indicate steam wastage, such as "motor boating," in which the disc begins to wear and fluctuates rapidly, allowing steam to leak through.
- Other Steam Traps (Thermostatic and Float Steam Trap and Orifice Steam Trap) Float and thermostatic traps consist of a ball float and a thermostatic bellows element. As condensate flows through the body, the float rises or falls, opening the valve according to the flow rate. The thermostatic element discharges air from the steam lines. They are good in heavy and light loads and on high and low pressure, but are not recommended where water hammer is a possibility. When these traps fail, they usually fail closed. However, the ball float may become damaged and sink down, failing in the open position. The thermostatic element may also fail and cause a "fail open" condition.

General Requirements for Safe and Efficient Operation of Steam Traps (Climate Technology Initiative 2001)

- 1. Every operating area should have a program to routinely check steam traps for proper operation. Testing frequency depends on local experiences but should at least occur yearly.
- 2. All traps should be numbered and locations mapped for easier testing and record-keeping. Trap supply and return lines should be noted to simplify isolation and repair.
- 3. Maintenance and operational personnel should be adequately trained in trap testing techniques. Where ultrasonic testing is needed, specially trained personnel should be used.
- 4. High maintenance priority should be given to the repair or maintenance of failed traps. Attention to such a timely maintenance procedure can reduce failures to 3% to 5% or less. A failed open trap can mean steam losses of 50 to 100 lb/hr.
- 5. All traps in closed systems should have atmospheric vents so that trap operation can be visually checked. If trap headers are not equipped with these, they should be modified.
- 6. Proper trap design should be selected for each specific application. Inverted bucket traps may be preferred over thermostatic and thermodynamic-type traps for certain applications.
- 7. It is important to be able to observe the discharge from traps through the header. Although several different techniques can be used, the most foolproof method for testing traps is observation. Without proper training, ultrasonic, acoustical, and pyrometric test methods can lead to erroneous conclusions.
- 8. Traps should be properly sized for the expected condensate load. Improper sizing can cause steam losses, freezing, and mechanical failures.
- 9. Condensate collection systems should be properly designed to minimize frozen and/or premature trap failures. Condensate piping should be sized to accommodate 10% of the traps failing to open.

For the case of fixed orifice traps, there is the possibility that on light loads these traps will pass live steam. There is also a tendency to waterlog under wide load variations. They can become clogged due to particulate buildup in the orifice and at times impurities can cause erosion and damage the orifice size, causing a blow-by of steam.

9.3.6 Diagnostic Tools

- Thermography An infrared thermometer or camera allows for an accurate, non-contact assessment of temperature. Applications for steam traps include testing for proper function and insulation assessments around the traps. More information on thermography can be found in Chapter 6.
- Ultrasonic analyzer Steam traps emit very distinct sound patterns; each trap type is said to have a particular signature. These sounds are not audible to the unaided ear. Using an ultrasonic detector, the analyst is able to isolate the frequency of sound being emitted by the steam trap, compare it to trended sound signatures, and make an assessment. Changes in these ultrasonic wave emissions are indicative of changes in steam trap function. More information on ultrasonic analysis can be found in Chapter 6.

9.3.7 Case Studies

1986 Event at a Major Research Government Facility (DOE 2001b)

On October 10, 1986, a condensate-induced water hammer at a major research government facility injured four steamfitters—two of them fatally. One of the steamfitters attempted to activate an 8-inch steam line located in a manhole. He noticed that there was no steam in either the steam line or the steam trap assembly and concluded that the steam trap had failed. Steam traps are devices designed to automatically remove condensate (liquid) from steam piping while the steam system is operating in a steady state. Without shutting off the steam supply, he and another steamfitter replaced the trap and left.

Later the first steamfitter, his supervisor, and two other steamfitters returned and found the line held a large amount of condensate. They cracked open a gate valve to drain the condensate into an

8-inch main. They cracked the valve open enough to allow water to pass, but this was too far open to control the sudden movement of steam into the main after all the condensate had been removed. A series of powerful water hammer surges caused the gaskets on two blind flanges in the manhole to fail, releasing hot condensate and steam into the manhole. A photograph of one failed gasket is shown in Figure 9.3.7. All four steamfitters suffered external burns and steam inhalation. Two of them died as a result.

A Type A Accident Investigation Board determined that the probable cause of the event was a lack of procedures and training, resulting in operational error. Operators had used an in-line gate valve to remove condensate from a steam line under pressure instead of drains installed for that purpose.

Figure 9.3.7. Failed gasket on blind flange.

The board also cited several management problems. There had been no Operational Readiness Review prior to system activation. Laboratory personnel had not witnessed all the hydrostatic and pressure testing, nor had all test results been submitted, as required by the contract. Documentation for design changes was inadequate. The board also determined that Brookhaven management had not been significantly involved in the activities of the steam shop.

1991 Event at a Georgia Hospital (DOE 2001c)

In June 1991, a valve gasket blew out in a steam system at a Georgia hospital. Operators isolated that section of the line and replaced the gasket. The section was closed for 2 weeks, allowing condensate to accumulate in the line. After the repair was completed, an operator opened the steam valve at the upstream end of the section. He drove to the other end and started to open the downstream steam valve. He did not open the blow-off valve to remove condensate before he opened the steam valve. Water hammer ruptured the valve before it was 20% open, releasing steam and condensate and killing the operator.

Investigators determined that about 1,900 pounds of water had accumulated at the low point in the line adjacent to the repaired valve, where a steam trap had been disconnected. Because the line was cold, the incoming steam condensed quickly, lowering the system pressure and accelerating the steam flow into the section. This swept the accumulated water toward the downstream valve and may have produced a relatively small steam-propelled water slug impact before the operator arrived. About 600 pounds of steam condensed in the cold section of the pipe before equilibrium was reached.

When the downstream valve was opened, the steam on the downstream side rapidly condensed into water on the upstream side. This flow picked up a 75 cubic foot slug of water about 400 feet downstream of the valve. The slug sealed off a steam pocket and accelerated until it hit the valve, causing it to rupture.

Investigators concluded that the accident could have been prevented if the operator had allowed the pipe to warm up first and if he had used the blow-off valve to remove condensate before opening the downstream valve.

Maintenance of Steam Traps

A steam trap assessment of three VA hospitals located in Providence, RI, Brockton, MA, and West Roxbury, MA was conducted with help of FEMP's SAVEnergy Program. The facilities are served by 15, 40, and 80 psig steam lines. The Providence system alone includes approximately 1,100 steam traps.

The assessment targeted steam trap performance and the value of steam losses from malfunctioning traps. The malfunctioning traps were designated for either repair or replacement. Included in this assessment was a training program on steam trap testing.

The cost of the initial steam trap audit was \$25,000 for the three facilities. Estimated energy savings totaled \$104,000. The cost of repair and replacement traps was about \$10,000. Thus, the cost savings of \$104,000 would pay for the implementation cost of \$35,000 in about 4 months.

9.3.8 Steam Traps Checklist

		Maintenance Frequency			
Description	Comments	Daily	Weekly	Monthly	Annually
Test steam traps	Daily/weekly test recommended for high- pressure traps (250 psig or more)	X			
Test steam traps	Weekly/monthly test recommended for medium-pressure traps (30-250 psig)		X		
Test steam traps	Monthly/annually test recommended for low-pressure traps			X	
Repair/replace steam traps	When testing shows problems. Typically, traps should be replaced every 3-4 years.			X	
Replace steam traps	When replacing, take the time to make sure traps are sized properly.				X

9.3.9 References

Avallone, EA and T Baumeister, editors. 1986. Marks' Standard Handbook for Mechanical Engineers. 9th ed. McGraw-Hill, New York.

Climate Technology Initiative. April 7, 2001. *Steam Systems*. CTI Energy Efficiency Workshop, September 19-26, 1999, Yakkaichi, Japan [Online report]. Available URL: http://www.climatetech.net/conferences/japan/pdf/chapt10.pdf. Reprinted with permission of the Climate Technology Initiative.

Gorelik, B. and A. Bandes. August 15, 2001. *Inspect Steam Traps for Efficient System*. [Online report]. Available URL: http://www.maintenanceresources.com/ReferenceLibrary/SteamTraps/Inspect.htm. Reprinted with permission of Mr. Bruce Gorelik.

- U.S. Department of Energy (DOE). March 30, 2001a. Steam Trap Performance Assessment. Federal Technology Alerts, Pacific Northwest National Laboratory, July 1999 [Online report]. Available URL: http://www.pnl.gov/fta/15_steamtrap/15_steamtrap.htm.
- U.S. Department of Energy (DOE). March 30, 2001b. 1986 Event at Brookhaven National Laboratory. NFS Safety Notes, Issue No. 98-02, November 1998, Office of Operating Experience Analysis and Feedback, Office of Nuclear and Facility Safety [Online report]. Available URL: http://tis.eh.doe.gov/web/oeaf/lessons learned/ons/sn9802.html.
- U.S. Department of Energy (DOE). March 30, 2001c. 1991 Event at a Georgia Hospital. NFS Safety Notes, Issue No. 98-02, November 1998, Office of Operating Experience Analysis and Feedback, Office of Nuclear and Facility Safety [Online report]. Available URL: http://tis.eh.doe.gov/web/oeaf/lessons_learned/ons/sn9802.html.

9.4 Chillers

9.4.1 Introduction

A chiller can be generally classified as a refrigeration system that cools water. Similar to an air conditioner, a chiller uses either a vapor-compression or absorption cycle to cool. Once cooled, chilled water has a variety of applications from space cooling to process uses.

9.4.2 Types of Chillers

9.4.2.1 Mechanical Compression Chiller (Dyer and Maples 1995)

The refrigeration cycle of a simple mechanical compression system is shown in Figure 9.4.1. The mechanical compression cycle has four basic components through which the refrigerant passes: (1) the evaporator, (2) the compressor, (3) the condenser, and (4) the expansion valve. The evaporator operates at a low pressure (and low temperature) and the condenser operates at high pressure (and temperature).

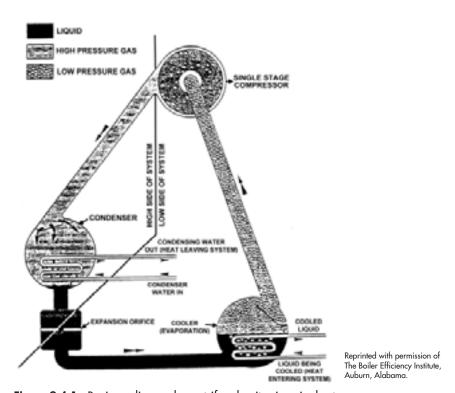


Figure 9.4.1. Basic cooling cycle-centrifugal unit using single-stage compressor.

The cycle begins in the evaporator where the liquid refrigerant flows over the evaporator tube bundle and evaporates, absorbing heat from the chilled water circulating through the tube bundle. The refrigerant vapor, which is somewhat cooler than the chilled water temperature, is drawn out of the evaporator by the compressor. The compressor "pumps" the refrigerant vapor to the condenser by raising the refrigerant pressure (and thus, temperature). The refrigerant condenses on the cooling water coils of the condenser giving up its heat to the cooling water. The high-pressure liquid refrigerant from the condenser then passes through the expansion device that reduces the refrigerant pressure

(and temperature) to that of the evaporator. The refrigerant again flows over the chilled water coils absorbing more heat and completing the cycle.

Mechanical compression chillers are generally classified by compressor type: reciprocating, centrifugal, and screw.

- Reciprocating This is a positive displacement machine that maintains fairly constant volumetric flow over a wide range of pressure ratios. They are almost exclusively driven by fixed speed electric motors.
- **Centrifugal** This type of compressor raises the refrigerant pressure by imparting momentum to the refrigerant with a spinning impeller, then stagnating the flow in a diffuser section around the impeller tip. They are noted for high capacity with compact design. Typical capacities range from 100 to 10,000 tons.
- **Screw** The screw or helical compressor is a positive displacement machine that has a nearly constant flow performance characteristic. The machine essentially consists of two matting helically grooved rotors, a male (lobes) and a female (gullies), in a stationary housing. As the helical rotors rotate, the gas is compressed by direct volume reduction between the two rotors.

9.4.2.2 Absorption Chiller

(Dyer and Maples 1995)

The absorption and the mechanical compression cycles have the evaporation and condensation of a refrigerant in common. In both cycles, the refrigerant evaporates at low pressure (and low temperature) to absorb heat and then condenses at higher pressure (and higher temperature) to reject heat to the atmosphere. Both cycles require energy to raise the temperature of the refrigerant for the heat rejection process. In the mechanical compression cycle, the energy is supplied in the form of work to the compressor whereas in the absorption cycle, heat is added (usually steam) to raise the refrigerant temperature.

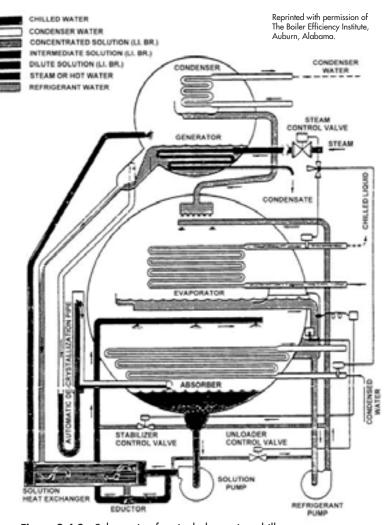


Figure 9.4.2. Schematic of typical absorption chiller.

The absorption cycle requires two working fluids: a refrigerant and an absorbent. Of the many combinations of refrigerant and absorbent that have been tried, only lithium bromide-water and ammonia-water cycles are commonly used today.

9.4.3 Key Components (Dyer and Maples 1995)

9.4.3.1 Mechanical Compression Chillers

- **Evaporator** Component in which liquid refrigerant flows over a tube bundle and evaporates, absorbing heat from the chilled water circulating through the tube bundle.
- **Compressor** "Pumps" the refrigerant vapor to the condenser by raising the refrigerant pressure (and thus, temperature).
- **Condenser** Component in which refrigerant condenses on a set of cooling water coils giving up its heat to the cooling water.
- **Expansion Valve** The high-pressure liquid refrigerant coming from the condenser passes through this expansion device, reducing the refrigerant's pressure (and temperature) to that of the evaporator.

9.4.3.2 Absorption Chiller

The absorption cycle is made up of four basic components:

- **Evaporator** Where evaporation of the liquid refrigerant takes place.
- **Absorber** Where concentrated absorbent is sprayed through the vapor space and over condensing water coils. Since the absorbent has a strong attraction for the refrigerant, the refrigerant is absorbed with the help of the cooling water coils.
- **Generator** Where the dilute solution flows over the generator tubes and is heated by the steam or hot water.
- **Condenser** Where the refrigerant vapor from the generator releases its heat of vaporization to the cooling water as it condenses over the condenser water tube bundle.

9.4.4 Safety Issues (TARAP 2001)

Large chillers are most commonly located in mechanical equipment rooms within the building they are air conditioning. If a hazardous refrigerant is used (e.g., ammonia), the equipment room must meet additional requirements typically including minimum ventilation airflows and vapor concentration monitoring.

In many urban code jurisdictions, the use of ammonia as a refrigerant is prohibited outright. For large chillers, the refrigerant charge is too large to allow hydrocarbon refrigerants in chillers located in a mechanical equipment room.

9.4.5 Cost and Energy Efficiency (Dyer and Maples 1995)

The following steps describe ways to improve chiller performance, therefore, reducing its operating costs:

- Raise chilled water temperature The energy input required for any liquid chiller (mechanical compression or absorption) increases as the temperature lift between the evaporator and the condenser increases. Raising the chilled water temperature will cause a corresponding increase in the evaporator temperature and thus, decrease the required temperature lift.
- Reduce condenser water temperature The effect of reducing condenser water temperature is very similar to that of raising the chilled water temperature, namely reducing the temperature lift that must be supplied by the chiller.

On a centrifugal chiller, if the chilled water temperature is raised by 2°F to 3°F, the system efficiency can increase by as much as 3% to 5%.

On a centrifugal chiller, if the condenser water temperature is decreased by 2°F to 3°F, the system efficiency can increase by as much as 2% to 3%.

- Reducing scale or fouling The heat transfer surfaces in chillers tends to collect various mineral and sludge deposits from the water that is circulated through them. Any buildup insulates the tubes in the heat exchanger causing a decrease in heat exchanger efficiency and thus, requiring a large temperature difference between the water and the refrigerant.
- Purge air from condenser Air trapped in the condenser causes an increased pressure at the compressor discharge. This results in increased compressor horsepower. The result has the same effect as scale buildup in the condenser.
- Maintain adequate condenser water flow Most chillers include a filter in the condenser water line to remove material picked up in the cooling tower. Blockage in this filter at higher loads will cause an increase in condenser refrigerant temperature due to poor heat transfer.
- Reducing auxiliary power requirements The total energy cost of producing chilled water is not limited to the cost of operating the chiller itself. Cooling tower fans, condenser water circulating pumps, and chilled water circulating pumps must also be included. Reduce these requirements as much as possible.
- Use variable speed drive on centrifugal chillers Centrifugal chillers are typically driven by fixed speed electric motors. Practical capacity reduction may be achieved with speed reductions, which in turn requires a combination of speed control and prerotation vanes.
- Compressor changeouts In many installations, energy saving measures have reduced demand to
 the point that existing chillers are tremendously oversized, forcing the chiller to operate at greatly
 reduced loads even during peak demand times. This causes a number of problems including surging and poor efficiency. Replacing the compressor and motor drive to more closely match the
 observed load can alleviate these problems.
- Use free cooling Cooling is often required even when outside temperatures drop below the minimum condenser water temperature. If outside air temperature is low enough, the chiller should be shut off and outside air used. If cooling cannot be done with outside air, a chiller bypass can be used to produce chilled water without the use of a chiller.

- Operate chillers at peak efficiency Plants having two or more chillers can save energy by load management such that each chiller is operated to obtain combined peak efficiency. An example of this is the use of a combination of reciprocating and centrifugal compressor chillers.
- Heat recovery systems Heat recovery systems extract heat from the chilled liquid and reject some of that heat, plus the energy of compression, to warm water circuit for reheat and cooling.
- Use absorption chilling for peak shaving In installations where the electricity demand curve is dominated by the demand for chilled water, absorption chillers can be used to reduce the overall electricity demand.
- Replace absorption chillers with electric drive centrifugals Typical absorption chillers require approximately 1.6 Btu of thermal energy delivered to the chiller to remove 1 Btu of energy from the chilled water. Modern electric drive centrifugal chillers require only 0.2 Btu of electrical energy to remove 1 Btu of energy from the chilled water (0.7 kw/ton).
- Thermal storage The storage of ice for later use is an increasing attractive option since cooling is required virtually year-round in many large buildings across the country. Because of utility demand charges, it is more economical to provide the cooling source during non-air conditioning periods and tap it when air conditioning is needed, especially peak periods.

9.4.6 Maintenance of Chillers (Trade Press Publishing Corporation 2001)

Similar to boilers, effective maintenance of chillers requires two activities: first, bring the chiller to peak efficiency and second, maintain that peak efficiency. There are some basic steps facility professionals can take to make sure their building's chillers are being maintained properly. Among them are:

- Inspecting the chiller as recommended by the chiller manufacturer. Typically, this should be done at least quarterly.
- Routine inspection for refrigerant leaks.
- Checking compressor operating pressures.
- Checking all oil levels and pressures.
- Examining all motor voltages and amps.
- Checking all electrical starters, contactors, and relays.
- Checking all hot gas and unloader operations.
- Using superheat and subcooling temperature readings to obtain a chiller's maximum efficiency.
- Taking discharge line temperature readings.

9.4.7 Diagnostic Tools

• Thermography – An infrared thermometer or camera allows for an accurate, non-contact assessment of temperature. Applications for chillers include insulation assessments on chilled water piping as well as motor/bearing temperature assessments on compressors and pumping systems. More information on thermography can be found in Chapter 6.

• Ultrasonic analyzer – Most rotating equipment and many fluid systems emit sound patterns in the ultrasonic frequency spectrum. Changes in these ultrasonic wave emissions are indicative of changes in equipment condition. Applications for chillers include compressor and chilled water pumping systems (bearing wear, etc.). Analyzers can also be used to identify refrigerant leaks. More information on ultrasonic analysis can be found in Chapter 6.

9.4.8 Chillers Checklist

		Maintenance Frequency			ency
Description	Comments	Daily	Weekly	Semi- Annually	Annually
Chiller use/sequencing	Turn off/sequence unnecessary chillers	X			
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X			
Check setpoints	Check all setpoints for proper setting and function	X			
Evaporator and condenser coil fouling	Assess evaporator and condenser coil fouling as required		X		
Compressor motor temperature	Check temperature per manufacturer's specifications		X		
Perform water quality test	Check water quality for proper chemical balance		X		
Leak testing	Conduct leak testing on all compressor fittings, oil pump joints and fittings, and relief valves		X		
Check all insulation	Check insulation for condition and appropriateness		X		
Control operation	Verify proper control function including: • Hot gas bypass • Liquid injection		X		
Check vane control settings	Check settings per manufacturer's specification			X	
Verify motor load limit control	Check settings per manufacturer's specification			X	
Verify load balance operation	Check settings per manufacturer's specification			X	
Check chilled water reset settings and function	Check settings per manufacturer's specification			X	
Check chiller lockout setpoint	Check settings per manufacturer's specification				X
Clean condenser tubes	Clean tubes at least annually as part of shutdown procedure				X

Chillers Checklist (contd)

		Maintenance Frequency			ency
Description	Comments	Daily	Weekly	Semi- Annually	Annually
Eddy current test condenser tubes	As required, conduct eddy current test to assess tube wall thickness				X
Clean evaporator tubes	Clean tubes at least annually as part of shutdown procedure				X
Eddy current test evaporator tubes	As required, conduct eddy current test to assess tube wall thickness				X
Compressor motor and assembly	Check all alignments to specification Check all seals, provide lubrication where necessary				X
Compressor oil system	 Conduct analysis on oil and filter Change as required Check oil pump and seals Check oil heater and thermostat Check all strainers, valves, etc. 				X
Electrical connections	Check all electrical connections/terminals for contact and tightness				X
Water flows	Assess proper water flow in evaporator and condenser				X
Check refrigerant level and condition	Add refrigerant as required. Record amounts and address leakage issues.				X

9.4.9 References

Dyer, D.F. and G. Maples. 1995. HVAC Efficiency Improvement. Boiler Efficiency Institute, Auburn, Alabama.

The Alliance for Responsible Atmospheric Policy (TARAP). August 3, 2001. Arthur D. Little Report, Section 7 Chiller. [Online report]. Available URL: http://www.arap.org/adlittle/7.html.

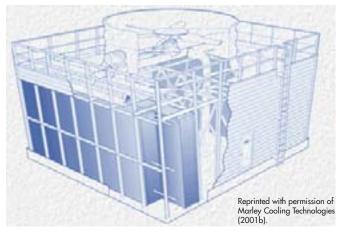
Trade Press Publishing Corporation. August 6, 2001. Energy Decisions, May 2000, Chiller Preventive Maintenance Checklist. [Online]. Available URL: http://www.facilitiesnet.com/fn/NS/NS3n0eb.html | ticket=1234567890123456789112925988.

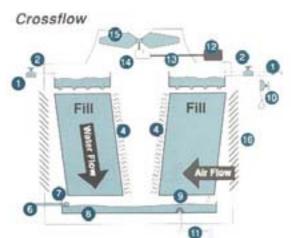
U.S. Department of Energy (DOE). August 4, 2001. *Incorrect Coolant Fluid Added to Chiller*, 2000-RL-HNF-0011, Lessons Learned Information Services. [Online report]. Available URL: http://tis.eh.doe.gov/ll/lldb/detail.CFM?Lessons__IdentifierIntern=2000%2DRL%2DHNF%2D0011.

9.5 Cooling Towers

9.5.1 Introduction

A cooling tower is a specialized heat exchanger in which two fluids (air and water) are brought into direct contact with each other to affect the transfer of heat. In a "spray-filled" tower, this is accomplished by spraying a flowing mass of water into a rain-like pattern, through which an upward moving mass flow of cool air is induced by the action of a fan (Marley Cooling Technologies 2001a).




Figure 9.5.1. Cooling tower

9.5.2 Types of Cooling Towers

There are two basic types of cooling towers, direct or open and indirect or closed.

1. Direct or open cooling tower (Figure 9.5.2)

This type of system exposes the cooling water directly to the atmosphere. The warm cooling is sprayed over a fill in the cooling tower to increase the contact area, and air is blown through the fill. The majority of heat removed from the cooling water is due to evaporation. The remaining cooled water drops into a collection basin and is recirculated to the chiller (WSUCEEP 2001).

- 1. Hot water from chiller
- 2. Flow control valve
- 3. Distribution pipes and nozzles
- 4. Draft eliminators
- 5. Centrifugal blower
- 6. Make-up water infeed
- 7. Float valve
- 8. Collection basin
- 9. Strainer

Reprinted with permission of Washington State University Cooperative Extension Energy Program.

- 10. Bleed water
- 11. Cooled water to chiller
- 12. Fan drive
- 13. Drive shaft
- 14. Gear box
- 15. Propeller fan
- 16. Air intake louvers

Figure 9.5.2. Direct or open cooling tower

2. Indirect or closed cooling tower

An indirect or closed cooling tower circulates the water through tubes located in the tower. In this type of tower, the cooling water does not come in contact with the outside air and represents a "closed" system.

9.5.3 Key Components

A cooling tower is a collection of systems that work together. Following is an overview of how these systems operate.

Hot water from a chilled water system is delivered to the top of the cooling tower by the condenser pump through distribution piping. The hot water is sprayed through nozzles onto the heat transfer media (fill) inside the cooling tower. Some towers feed the nozzles through pressurized piping; others use a water distribution basin and feed the nozzles through gravity.

A cold-water collection basin at the base of the tower gathers cool water after it has passed through the heat transfer media. The cool water is pumped back to the condenser to complete the cooling water loop.

Cooling towers use evaporation to release waste heat from a HVAC system. Hot water flowing from the condenser is slowed down and spread out in the heat transfer media (fill). A portion of the hot water is evaporated in the fill area, which cools the bulk water. Cooling tower fill is typically arranged in packs of thin corrugated plastic sheets or, alternately, as splash bars supported in a grid pattern.

Large volumes of air flowing through the heat transfer media help increase the rate of evaporation and cooling capacity of the tower. This airflow is generated by fans powered by electric motors. The cooling tower fan size and airflow rate are selected for the desired cooling at the design conditions of hot water, cold water, water flow rate, and wet bulb air temperature.

HVAC cooling tower fans may be propeller type or squirrel cage blowers, depending on the tower design. Small fans may be connected directly to the driving motor, but most designs require an intermediate speed reduction provided by a power belt or reduction gears. The fan and drive system operates in conjunction with a starter and control unit that provides start/stop and speed control.

As cooling air moves through the fill, small droplets of cooling water become entrained and can exit the cooling tower as carry-over or drift. Devices called drift eliminators are used to remove carry-over water droplets. Cooling tower drift becomes an annoyance when the droplets fall on people and surfaces downwind from the cooling tower. Efficient drift eliminators remove virtually all of the entrained cooling water droplets from the air stream (Suptic 1998).

9.5.4 Safety Issues

Warm water in the cooling system is a natural habitat for microorganisms. Chemical treatment is required to eliminate this biological growth. Several acceptable biocides are available from water treatment companies for this purpose. Cooling towers must be thoroughly cleaned on a periodic basis to minimize bacterial growth. Unclean cooling towers promote growth of potentially infectious bacteria, including Legionella Pneumophilia (Suptic 1998).

Legionella may be found in water droplets from cooling towers, which may become airborne and become a serious health hazard if inhaled by a human. The lung is a warm and moist environment, which presents perfect conditions for the growth of such a disease. Common symptoms on patients with legionnaires disease are cough, chills, and fever. In addition, muscle aches, headache, tiredness, loss of appetite, and, occasionally, diarrhea can also be present. Laboratory tests may show decreased function of the kidneys. Chest x-rays often show pneumonia.

9.5.5 Cost and Energy Efficiency

An improperly maintained cooling tower will produce warmer cooling water, resulting in higher condenser temperatures than a properly maintained cooling tower. This reduces the efficiency of the chiller, wastes energy, and increases cost. The chiller will consume 2.5% to 3.5% more energy for each degree increase in the condenser temperature.

For example, if a 100-ton chiller costs \$20,000 in energy to operate each year, it will cost you an additional \$500 to \$700 per year for every degree increase in condenser temperature. Thus, for a 5°F to 10°F increase, you can expect to pay \$2,500 to \$7,000 a year in additional electricity costs. In addition, a poorly maintained cooling tower will have a shorter operating life, is more likely to need costly repairs, and is less reliable (WSUCEEP 2001).

9.5.6 Maintenance of Cooling Towers

Cooling tower maintenance must be an ongoing endeavor. Lapses in regular maintenance can result in system degradation, loss of efficiency, and potentially serious health issues.

General Requirements for Safe and Efficient Cooling Towers Provide: (Suptic 1998)

- 1. Safe access around the cooling tower, including all points where inspection and maintenance activities occur.
- 2. Fall protection around inspection and maintenance surfaces, such as the top of the cooling tower.
- 3. Lockout of fan motor and circulating pumps during inspection and maintenance.
- 4. Protection of workers from exposure to biological and chemical hazards within the cooling water system.
- Cooling tower location must prevent cooling tower discharge air from entering the fresh air intake ducts of any building.
- 1. When starting the tower, inspect and remove any accumulated debris.
- 2. Balance waterflow following the tower manufacturer's procedure to ensure even distribution of hot water to all areas of the fill. Poorly distributed water can lead to air bypass through the fill and loss of tower performance.
- 3. Follow your water treating company's recommendations regarding chemical addition during startup and continued operation of the cooling system. Galvanized steel cooling towers require special passivation procedures during the first weeks of operation to prevent "white rust."
- 4. Before starting the fan motor, check the tightness and alignment of drive belts, tightness of mechanical hold-down bolts, oil level in gear reducer drive systems, and alignment of couplings. Rotate the fan by hand and ensure that blades clear all points of the fan shroud.
- 5. The motor control system is designed to start and stop the fan to maintain return cold water temperature. The fan motor must start and stop no more frequently than four to five times per hour to prevent motor overheating.
- 6. Blowdown water rate from the cooling tower should be adjusted to maintain between two to four concentrations of dissolved solids.

9.5.7 Common Causes of Cooling Towers Poor Performance

- Scale Deposits When water evaporates from the cooling tower, it leaves scale deposits on the surface of the fill from the minerals that were dissolved in the water. Scale build-up acts as a barrier to heat transfer from the water to the air. Excessive scale build-up is a sign of water treatment problems.
- Clogged Spray Nozzles Algae and sediment that collect in the water basin as well as excessive solids that get into the cooling water can clog the spray nozzles. This causes uneven water distribution over the fill, resulting in uneven air flow through the fill and reduced heat transfer surface area. This problem is a sign of water treatment problems and clogged strainers.
- Poor Air Flow Poor air flow through the tower reduces the amount of heat transfer from the
 water to the air. Poor air flow can be caused by debris at the inlets or outlets of the tower or in
 the fill. Other causes of poor air flow are loose fan and motor mountings, poor motor and fan
 alignment, poor gear box maintenance, improper fan pitch, damage to fan blades, or excessive
 vibration. Reduced air flow due to poor fan performance can ultimately lead to motor or fan
 failure.
- **Poor Pump Performance** An indirect cooling tower uses a cooling tower pump. Proper water flow is important to achieve optimum heat transfer. Loose connections, failing bearings, cavitation, clogged strainers, excessive vibration, and non-design operating conditions result in reduced water flow, reduced efficiency, and premature equipment failure (WSUCEEP 2001).

9.5.8 Diagnostic Tools

- Thermography An infrared thermometer or camera allows for an accurate, non-contact assessment of temperature. Applications for cooling towers include bearing and electrical contact assessments on motor and fan systems as well as hot spots on belt and other drive systems. More information on thermography can be found in Chapter 6.
- **Ultrasonic analyzer** Electric motor and fan systems emit very distinct sound patterns around bearings and drives (direct or belt). In most cases, these sounds are not audible to the unaided ear, or are drown-out by other equipment noises. Using an ultrasonic detector, the analyst is able to isolate the frequency of sound being emitted by the bearing or drive. Changes in these ultrasonic wave emissions are indicative of changes in equipment condition-some of these changes can be a precursor to component degradation and failure. More information on ultrasonic analysis can be found in Chapter 6.

9.5.9 Cooling Towers Checklist

		Maintenance Frequenc			ncy
Description	Comments	Daily	Weekly		Annually
Cooling tower use/	Turn off/sequence unnecessary cooling towers	X			
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X			
Inspect for clogging	Make sure water is flowing in tower	X			
Fan motor condition	Check the condition of the fan motor through temperature or vibration analysis and compare to baseline values		X		
Clean suction screen	Physically clean screen of all debris		X		
Test water samples	Test for proper concentrations of dissolved solids, and chemistry. Adjust blowdown and chemicals as necessary.		X		
Operate make-up water float switch	Operate switch manually to ensure proper operation		X		
Vibration	Check for excessive vibration in motors, fans, and pumps		X		
Check tower structure	Check for loose fill, connections, leaks, etc.		X		
Check belts and pulleys	Adjust all belts and pulleys		X		
Check lubrication	Assure that all bearings are lubricated per the manufacture's recommendation			X	
Check motor supports and fan blades	Check for excessive wear and secure fastening			X	
Motor alignment	Aligning the motor coupling allows for efficient torque transfer			X	
Check drift eliminators, louvers, and fill	Look for proper positioning and scale build up			X	
Clean tower	Remove all dust, scale, and algae from tower basin, fill, and spray nozzles				X
Check bearings	Inspect bearings and drive belts for wear. Adjust, repair, or replace as necessary.				X
Motor condition	Checking the condition of the motor through temperature or vibration analysis assures long life				X

9.5.10 References

Hanaro, Korea Atomic Research Institute. April 12, 2001. Cooling Tower. [Online]. Available URL: http://hpngp01.kaeri.re.kr/hanaro/photo/cooltower.html.

Marley Cooling Technologies. July 6, 2001a. Cooling Information Index. [Online report]. Available URL: http://www.marleyct.com/pdf_forms/CTII-1.pdf. Reprinted with permission of Marley Cooling Technologies.

Marley Cooling Technologies. September 2, 2002b. Sigma F Series. [Online report]. Available URL: http://www.marleyct.com/sigmafseries.htm. Reprinted with permission of Marley Cooling Technologies.

Suptic, D.M. April 13, 2001. A Guide to Trouble-Free Cooling Towers: A basic understanding of cooling tower operation and maintenance will help keep a cooling water system running in top condition, year after year, June 1998, RSES Journal. [Online report]. Available URL: http://www.pace-incorporated.com/maint1.htm. Reprinted with permission of RSES Journal.

Washington State University Cooperative Extension Energy Program (WSUCEEP). April 24, 2001. Optimizing Cooling Tower Performance, WSUEEP98013 [Online report]. Available URL: http://www.es.wapa.gov/pubs/briefs/cooling/tb_cool.cfm. Reprinted with permission of Washington State University Cooperative Extension Energy Program.

9.6 Energy Management/Building Automation Systems

9.6.1 Introduction

The objective of an energy management/building automation system (also know as an energy management and control system [EMCS]) is to achieve an optimal level of control of occupant comfort while minimizing energy use. These control systems are the integrating component to fans, pumps, heating/ cooling equipment, dampers, mixing boxes, and thermostats. Monitoring and optimizing temperature, pressure, humidity, and flow rates are key functions of modern building control systems.

ASDMaster: Adjustable Speed Drive Evaluation Methodology and Application Software

This Windows software program helps you, as a plant or operations professional, determine the economic feasibility of an ASD application, predict how much electrical energy may be saved by using an ASD, and search a database of standard drives.

Available from:

The Electric Power Research Institute http://www.epri-peac.com/asdmaster/.

9.6.2 System Types

At the crudest level of energy management and control is the manual operation of energy using devices; the toggling on and off of basic comfort and lighting systems based on need. The earliest forms of energy management involved simple time clock- and thermostat-based systems; indeed, many of these systems are still being used. Typically, these systems are wired directly to the end-use equipment and mostly function autonomously from other system components. Progressing with technology and the increasing economic availability of microprocessor-based systems, energy management has quickly moved to its current state of computer based, digitally controlled systems.

Direct digital control (DDC) systems function by measuring particular system variables (temperature, for instance), processing those variables (comparing a measured temperature to a desired setpoint), and then signaling a terminal device (air damper/mixing box) to respond. With the advent of DDC systems, terminal devices are now able to respond quicker and with more accuracy to a given input. This increased response is a function of the DDC system capability to control devices in a nonlinear fashion. Control that once relied on linear "hunting" to arrive at the desired setpoint now is accomplished through sophisticated algorithms making use of proportional and integral (PI) control strategies to arrive at the setpoint quicker and with more accuracy.

9.6.3 Key Components

The hardware making up modern control systems have three necessary elements: sensors, controllers, and the controlled devices.

• Sensors – There is an increasing variety and level of sophistication of sensors available for use with modern control systems. Some of the more common include: temperature, humidity, pressure, flow rate, and power. Becoming more common are sensors that track indoor air quality, lighting level, and fire/smoke.

- Controllers The function of the controller is to compare a signal received from the sensor to a
 desired setpoint, and then send out a corresponding signal to the controlled device for action.
 Controllers may be very simple such as a thermostat where the sensor and controller are usually
 co-located, to very sophisticated microprocessor based systems capable of powerful analysis
 routines.
- Controlled devices The controlled device is the terminal device receiving the signal from the
 controller. Amongst others, typical controlled devices include: air dampers, mixing boxes, control valves, and in some cases, fans, pumps, and motors.

9.6.4 Safety Issues

The introduction of outdoor air is the primary means for dilution of potentially harmful contaminants. Because an EMCS has the capability to control ventilation rates and outdoor-air volumes, certain health and safety precautions need to be taken to ensure proper operation and air quality. Regular checks of contaminant levels, humidity levels, and proper system operation are recommended.

A modern EMCS is capable of other control functions including fire detection and fire suppression systems. As these systems take on other roles, roles that now include responsibilities for personal safety, their operations and maintenance must be given the highest priority.

9.6.5 Cost and Efficiency

Simply installing an EMCS does not guarantee that a building will save energy. Proper installation and commissioning are prerequisites for optimal operation and realizing potential savings. While it is beyond the scope of this guide to detail all the possible EMCS savings strategies, some of the more common functions are presented below.

- Scheduling An EMCS has the ability to schedule the HVAC system for night setback, holiday/ weekend schedules (with override control), optimal start/stop, and morning warm-up/cool-down functions.
- Resets Controlling and resetting temperatures of supply air, mixed air, hot water, and chilled
 water optimize the overall systems for efficiency.
- **Economizers** Controlling economizer functions with an EMCS helps to assure proper integration and function with other system components. Strategies include typical air-side functions (i.e., economizer use tied to inside setpoints and outside temperatures) and night-time ventilation (purge) operations.
- Advanced functionality A more sophisticated EMCS has expended capabilities including chiller/boiler staging, variable speed drive control, zoned and occupancy-based lighting control, and electrical demand limiting.

9.6.6 Maintenance

The ability of an EMCS to efficiently control energy use in a building is a direct function of the data provided to the EMCS. The old adage 'garbage in - garbage out' could not hold more truth than in an EMCS making decisions based on a host of sensor inputs.

For a number of reasons, the calibration of sensors is an often overlooked activity. In many ways, sensors fall into the same category as steam traps: if it doesn't 'look' broken - don't fix it. Unfortunately, as with steam traps, sensors out of calibration can lead to enormous energy penalties. Furthermore, as with steam traps, these penalties can go undetected for years without a proactive maintenance program.

The following is a list of sensors and actuators that will most need calibration (PECI 1997):

- Outside air temperature
- Mixed air temperature
- Return air temperature
- Discharge or supply air temperature
- Coil face discharge air temperatures
- Chilled water supply temperature
- Condenser entering water temperature
- Heating water supply temperature
- Wet bulb temperature or RH sensors
- Space temperature sensors
- Economizer and related dampers
- Cooling and heating coil valves
- Static pressure transmitters
- Air and water flow rates
- Terminal unit dampers and flows.

Are You Calibrated?

Answer the following questions to determine if your system or equipment needs calibration (PECI 1997):

- 1. Are you sure your sensors and actuators were calibrated when originally installed?
- 2. Have your sensors or actuators been calibrated since?
- 3. Have temperature complaints come from areas that ought to be comfortable?
- 4. Are any systems performing erratically?
- 5. Are there areas or equipment that repeatedly have comfort or operational problems?

Sensor and actuator calibration should be an integral part of all maintenance programs.

9.6.7 Diagnostic Tools

• Calibration – All energy management systems rely on sensors for proper feedback to adjust to efficient conditions. The accuracy with which these conditions are reached is a direct function of the accuracy of the sensor providing the feedback. Proper and persistent calibration activities are a requirement for efficient conditions.

9.6.8 Case Studies

Benefit of O&M Controls Assessments (PECI 1999)

A 250,000 square foot office building in downtown Nashville, Tennessee, was renovated in 1993. The renovation included installing a DDC energy management control system to control the variable air volume (VAV) HVAC system and lighting and a variable frequency drive (VFD) for the chilled water system. The building was not commissioned as part of the renovation. An O&M assessment was performed 3 years later because the building was experiencing problems and energy bills seemed

higher then expected. As a result of the assessment, a total of 32 O&M related problems including a major indoor air quality (IAQ) deficiency were identified. It was also determined that the majority of these problems had been present since the renovation. Annual energy savings from the recommended O&M improvements and repairs are estimated at \$9,300. The simple payback for both the assessment and implementation is under 7 months.

9.6.9 Building Controls Checklist

			Maintenance Frequency			
Description	Comments	Daily	Weekly	Semi- Annually	Annually	
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X				
Verify control schedules	Verify in control software that schedules are accurate for season, occupancy, etc.	X				
Verify setpoints	Verify in control software that setpoints are accurate for season, occupancy, etc.	X				
Time clocks	Reset after every power outage	X				
Check all gauges	Check all gauges to make sure readings are as expected		X			
Control tubing (pneumatic system)	Check all control tubing for leaks		X			
Check outside air volumes	Calculated the amount of outside air introduced and compare to requirements		X			
Check setpoints	Check setpoints and review rational for setting		X			
Check schedules	Check schedules and review rational for setting		X			
Check deadbands	Assure that all deadbands are accurate and the only simultaneous heating and cooling is by design		X			
Check sensors	Conduct thorough check of all sensors - temperature, pressure, humidity, flow, etc for expected values			X		
Time clocks	Check for accuracy and clean			X		
Calibrate sensors	Calibrate all sensors: temperature, pressure, humidity, flow, etc.				X	

9.6.10 References

PECI. 1997. Energy Management Systems: A Practical Guide. Portland Energy Conservation, Inc., Portland, Oregon.

PECI. 1999. Operations and Maintenance Assessments. Portland Energy Conservation, Inc. Published by the U.S. Environmental Protection Agency and the U.S. Department of Energy.

9.7 Pumps

9.7.1 Introduction

Keeping pumps operating successfully for long periods of time requires careful pump design selection, proper installation, careful operation, the ability to observe changes in performance over time, and in the event of a failure, the capacity to thoroughly investigate the cause of the failure and take measures to prevent the problem from recurring. Pumps that are properly sized and dynamically balanced, that sit on stable foundations with good shaft alignment and with proper lubrication, that operators

Pumping System Assessment Tool (PSAT)

The Pumping System Assessment Tool helps industrial users assess the efficiency of pumping system operations. PSAT uses achievable pump performance data from Hydraulic Institute standards and motor performance data from the MotorMaster+ database to calculate potential energy and associated cost savings.

Available from:

U.S. Department of Energy
Energy Efficiency and Renewable Energy Network
(800) 363-3732
www.oit.doe.gov/bestpractices/motors/.

start, run, and stop carefully, and that maintenance personnel observe for the appearance of unhealthy trends which could begin acting on and causing damage to, usually never experience a catastrophic failure (Piotrowski 2001).

9.7.2 Types of Pumps

The family of pumps comprehends a large number of types based on application and capabilities.

The two major groups of pumps are dynamic and positive displacement.

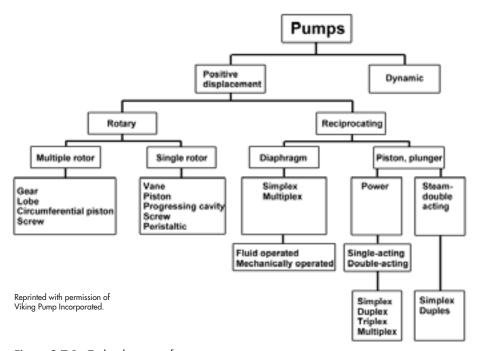


Figure 9.7.1. Technology tree for pumps.

9.7.2.1 Dynamic Pump (Centrifugal Pump) (Pump World 2001a)

Centrifugal pumps are classified into three general categories:

- **Radial flow** a centrifugal pump in which the pressure is developed wholly by centrifugal force.
- **Mixed flow** a centrifugal pump in which the pressure is developed partly by centrifugal force and partly by the lift of the vanes of the impeller on the liquid.
- **Axial flow** a centrifugal pump in which the pressure is developed by the propelling or lifting action of the vanes of the impeller on the liquid.

9.7.2.2 Positive Displacement Pump (Pump World 2001c)

A positive displacement pump has an expanding cavity on the suction side of the pump and a decreasing cavity on the discharge side. Liquid is allowed to flow into the pump as the cavity on the suction side expands and the liquid is forced out of the discharge as the cavity collapses. This principle applies to all types of positive displacement pumps whether the pump is a rotary lobe, gear within a gear, piston, diaphragm, screw, progressing cavity, etc.

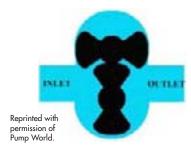


Figure 9.7.2. Rotary lobe pump.

A positive displacement pump, unlike a centrifugal pump, will produce the same flow at a given rpm no matter what the discharge pressure is. A positive displacement pump cannot be operated against a closed valve on the discharge side of the pump, i.e., it does not have a shut-off head like a centrifugal pump does. If a positive displacement pump is allowed to operate against a closed discharge valve, it will continue to produce flow which will increase the pressure in the discharge line until either the line bursts or the pump is severely damaged or both (Pump World 2001d).

For purposes of this guide, positive displacement pumps are classified into two general categories and then subdivided into four categories each:

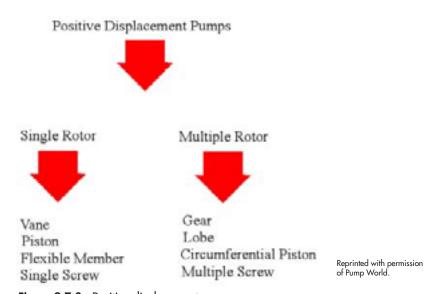


Figure 9.7.3. Positive displacement pumps.

9.7.3 Key Components

9.7.3.1 Centrifugal Pump (Pump World 2001b)

The two main components of a centrifugal pump are the impeller and the volute.

The impeller produces liquid velocity and the volute forces the liquid to discharge from the pump converting velocity to pressure. This is accomplished by offsetting the impeller in the volute and by maintaining a close clearance between the impeller and the volute at the cut-water. Please note the impeller rotation. A centrifugal pump impeller slings the liquid out of the volute.

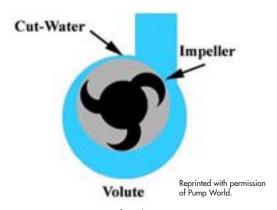


Figure 9.7.4. Centrifugal pump.

9.7.3.2 Positive Displacement Pumps

- Single Rotor (Pump World 2001d)
 - Vane The vane(s) may be blades, buckets, rollers, or slippers that cooperate with a dam to draw fluid into and out of the pump chamber.
 - **Piston** Fluid is drawn in and out of the pump chamber by a piston(s) reciprocating within a cylinder(s) and operating port valves.
 - **Flexible Member** Pumping and sealing depends on the elasticity of a flexible member(s) that may be a tube, vane, or a liner.
 - **Single Screw** Fluid is carried between rotor screw threads as they mesh with internal threads on the stator.
- Multiple Rotor (Pump World 2001d)
 - Gear Fluid is carried between gear teeth and is expelled by the meshing of the gears that
 cooperate to provide continuous sealing between the pump inlet and outlet.
 - **Lobe** Fluid is carried between rotor lobes that cooperate to provide continuous sealing between the pump inlet and outlet.
 - **Circumferential Piston** Fluid is carried in spaces between piston surfaces not requiring contacts between rotor surfaces.
 - **Multiple Screw** Fluid is carried between rotor screw threads as they mesh.

• Relief Valves (Pump World 2001e)

Note: A relief valve on the discharge side of a positive displacement pump is an absolute must!

- Internal Relief Valve Pump manufacturers normally have an option to supply an internal relief valve. These relief valves will temporarily relieve the pressure on the discharge side of a pump operating against a closed valve. They are normally not full ported, i.e., cannot bypass all the flow produced by the pump. These internal relief valves should be used for pump protection against a temporary closing of a valve.
- External Relief Valve An external relief valve (RV) installed in the discharge line with a
 return line back to the supply tank is highly recommended to provide complete protection
 against an unexpected over pressure situation.

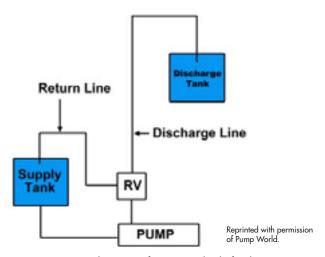


Figure 9.7.5. Schematic of pump and relief valve.

9.7.4 Safety Issues (Pompe Spec Incorporated 2001)

Some important safety tips related to maintenance actions for pumps:

- Safety apparel
 - Insulated work gloves when handling hot bearings or using bearing heater.
 - Heavy work gloves when handling parts with sharp edges, especially impellers.
 - Safety glasses (with side shields) for eye protection, especially in machine shop area.
 - Steel-toed shoes for foot protection when handling parts, heavy tools, etc.
- Safe operating procedures
 - Coupling guards: Never operate a pump without coupling guard properly installed.
 - Flanged connections:
 - Never force piping to make connection with pump.
 - Insure proper size, material, and number of fasteners are installed.
 - Beware of corroded fasteners.

- When operating pump:
 - Do not operate below minimum rated flow, or with suction/discharge valves closed.
 - Do not open vent or drain valves, or remove plugs while system is pressurized.
- Maintenance safety
 - Always lock out power.
 - Ensure pump is isolated from system and pressure is relieved before any disassembly of pump, removal of plugs, or disconnecting piping.
 - Pump and components are heavy. Failure to properly lift and support equipment could result in serious injury.
 - Observe proper decontamination procedures. Know and follow company safety regulations.
 - Never apply heat to remove impeller.

9.7.5 Cost and Energy Efficiency

Pumps frequently are asked to operate far off their best efficiency point, or are perched atop unstable base-plates, or are run under moderate to severe misalignment conditions, or, having been lubricated at the factory, are not given another drop of lubricant until the bearings seize and vibrate to the point where bolts come loose. When the unit finally stops pumping, new parts are thrown on the machine and the deterioration process starts all over again, with no conjecture as to why the failure occurred.

The following are measures that can improve pump efficiency (OIT 1995):

- Shut down unnecessary pumps.
- Restore internal clearances if performance has changed.
- Trim or change impellers if head is larger than necessary.
- Control by throttle instead of running wide-open or bypassing flow.
- Replace oversized pumps.
- Use multiple pumps instead of one large one.
- Use a small booster pump.
- Change the speed of a pump for the most efficient match of horsepower requirements with output.

Proper maintenance is vital to achieving top pump efficiency expected life. Additionally, because pumps are a vital part of many HVAC and process applications, their efficiency directly affects the efficiency of other system components. For example, an improperly sized pump can impact critical

The heart beats an average of 75 times per minute, or about 4,500 times per hour. While the body is resting, the heart pumps 2.5 ounces of blood per beat. This amount does not seem like much, but it sums up to almost 5 liters of blood pumped per minute by the heart, or about 7,200 liters per day. The amount of blood delivered by the heart can vary depending upon the body's need. During periods of great activity, such as exercising, the body demands higher amounts of blood, rich in oxygen and nutrients, increasing the heart's output by nearly five times.

flow rates to equipment whose efficiency is based on these flow rates—a chiller is a good example of this.

9.7.6 Maintenance of Pumps (General Service

Administration 1995)

The importance of pumps to the daily operation of buildings and processes necessitates a proactive maintenance program. Most pump maintenance activities center on checking packing

Large Horsepower (25 horsepower and above) Pump Efficiency Survey (OIT 1995)

Actions are given in decreasing potential for efficiency improvement:

- 1. Excessive pump maintenance this is often associated with one of the following:
 - Oversized pumps that are heavily throttled.
 - Pumps in cavitation.
 - Badly worn pumps.
 - Pumps that are misapplied for the present operation.
- 2. Any pump system with large flow or pressure variations. When normal flows or pressures are less than 75% of their maximum, energy is probably being wasted from excessive throttling, large bypass flows, or operation of unneeded pumps.
- 3. Bypassed flow, either from a control system or deadhead protection orifices, is wasted energy.
- 4. Throttled control valves. The pressure drop across a control valve represents wasted energy, that is proportional to the pressure drop and flow.
- 5. Fixed throttle operation. Pumps throttled at a constant head and flow indicate excess capacity.
- 6. Noisy pumps or valves. A noisy pump generally indicates cavitation from heavy throttling or excess flow. Noisy control valves or bypass valves usually mean a higher pressure drop with a corresponding high energy loss.
- 7. A multiple pump system. Energy is commonly lost from bypassing excess capacity, running unneeded pumps, maintaining excess pressure, or having as large flow increment between pumps.
- 8. Changes from design conditions. Changes in plant operating conditions (expansions, shutdowns, etc.) can cause pumps that were previously well applied to operate at reduced efficiency.
- 9. A low-flow, high-pressure user. Such users may require operation of the entire system at high pressure.
- 10. Pumps with known overcapacity. Overcapacity wastes energy because more flow is pumped at a higher pressure than required.

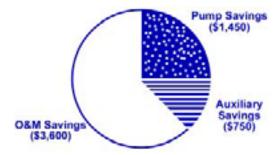
and mechanical seals for leakage, performing preventive/predictive maintenance activities on bearings, assuring proper alignment, and validating proper motor condition and function.

9.7.7 Diagnostic Tools

- **Ultrasonic analyzer** Fluid pumping systems emit very distinct sound patterns around bearings and impellers. In most cases, these sounds are not audible to the unaided ear, or are drown-out by other equipment noises. Using an ultrasonic detector, the analyst is able to isolate the frequency of sound being emitted by the bearing or impeller. Changes in these ultrasonic wave emissions are indicative of changes in equipment condition-some of these changes can be a precursor to component degradation and failure. More information on ultrasonic analysis can be found in Chapter 6.
- **Vibration analyzer** Within a fluid pump, there are many moving parts; some in rotational motion and some in linear motion. In either case, these parts generate a distinct pattern and

level of vibration. Using a vibration analyzer and signature analysis software, the analyst can discern the vibration amplitude of the point on the equipment being monitored. This amplitude is then compared with trended readings. Changes in these readings are indicative of changes in equipment condition. More information on vibration analysis can be found in Chapter 6.

9.7.8 Case Study (DOE 2001)


Pump Optimization for Sewage Pumping Station

The town of Trumbull, CT was looking for a way to increase the operating performance of one of its ten sewage-pumping stations. The station consisted of two identical sewage-handling pumps (each with a 40-hp direct drive motor) vertically mounted below ground, handling 340,000 gallons of raw sewage per day. The system used one pump to handle the entire flow under normal operation, and used the second pump only in extreme conditions (heavy rainfall). To meet normal loads, each pump rarely operated more than 5 minutes at a time. The control system required two continuously running compressors. A constant pump speed of 1,320 rpm was obtained using a wound rotor and variable resistance circuit motor control system. The pumping system experienced frequent breakdowns, occasional flooding, and sewage spills.

After a thorough systems analysis, engineers installed an additional 10-hp pump with direct on-line motor starters and a passive level control system with float switches, replacing the old active control system. The new pump handles the same volume as the original 40-hp pumps during normal periods, but runs for longer periods of time. The lower outflow rate reduces friction and shock losses in the piping system, which lowers the required head pressure (and thus, the energy consumption).

In addition, the existing pump speed control was eliminated and the motors were wired for direct on-line start. Without the speed control, the motors powering the existing pumps run at 1,750 rpm instead of 1,320 rpm, so their impellers were trimmed to a smaller diameter. The existing pumps are still used for the infrequent peak flows that the new smaller pump cannot handle. Energy consumption was further reduced through the elimination of the two compressors for the active control system and the two circulating pumps for the old motor control system. The installed cost of all the added measures was \$11,000.

Results. In addition to the annual 17,650 kWh of electricity savings from modifying the pump unit, significant energy savings also resulted from changes made to other energy use sources in the station (Figure 9.7.6). Annual energy consumption of the active level control (7,300 kWh/year) and the cooling water pumps (1,750 kWh/year) was entirely eliminated. In all, over 26,000 kWh is being saved annually, a reduction of almost 38%, resulting in \$2,200 in annual energy savings.

Figure 9.7.6. Pump system energy use and savings.

This project also produced maintenance savings of \$3,600. Maintenance staff no longer needs to replace two mechanical seals each year. Other benefits of the project savings include extended equipment life due to reduced starting and stopping of the equipment, increased system capacity, and decreased noise. Most of the same measures can be utilized at the town's other pumping stations, as well.

The total annual savings from the project, due to lower energy costs as well as reduced maintenance and supplies, is \$5,800 (Figure 9.7.7), which is roughly half of the total retrofit cost of \$11,000.

Lessons Learned. Several key conclusions from Trumbull's experience are relevant for virtually any pumping systems project:

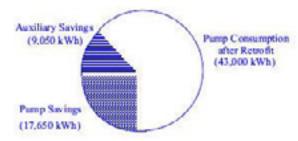


Figure 9.7.7. Retrofit cost savings (\$5,800 annually).

- Proper pump selection and careful attention to equipment operating schedules can yield substantial energy savings.
- In systems with static head, stepping of pump sizes for variable flow rate applications can decrease energy consumption.
- A "systems" approach can identify energy and cost savings opportunities beyond the pumps themselves.

9.7.9 Pumps Checklist

			Maintenance Frequency		
Description	Comments	Daily	Weekly	Monthly	Annually
Pump use/sequencing	Turn off/sequence unnecessary pumps	X			
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X			
Check lubrication	Assure that all bearings are lubricated per the manufacture's recommendation			X	
Check packing	Check packing for wear and repack as necessary. Consider replacing packing with mechanical seals.			X	
Motor/pump alignment	Aligning the pump/motor coupling allows for efficient torque transfer to the pump			X	
Check mountings	Check and secure all pump mountings			X	
Check bearings	Inspect bearings and drive belts for wear. Adjust, repair, or replace as necessary.				X
Motor condition	Checking the condition of the motor through temperature or vibration analysis assures long life				Х

9.7.10 References

General Service Administration. 1995. Public Buildings Maintenance Guides and Time Standards. Publication 5850, Public Building Service, Office of Real Property Management and Safety.

OIT. 1995. Modern Industrial Assessments: A Training Manual. Industrial Assessment Manual from the Office of Productivity and Energy Assessment at the State University of New Jersey, Rutgers, for the U.S. Department of Energy Office of Industrial Technology.

Piotrowski, J. April 2, 2001. *Pro-Active Maintenance for Pumps*. Archives, February 2001, Pump-Zone.com [Report online]. Available URL: http://www.pump-zone.com. Reprinted with permission of Pump & Systems Magazine.

Pompe Spec Incorporated. July 13, 2001. *Safety Tips*. Resources [Online]. Available URL: http://www.pompespec.com/frameset_e.html?ressources_e.html~bodypompespec. Reprinted with permission of Pompe Spec Incorporated.

Pump World. May 30, 2001a. Centrifugal. [Online]. Available URL: http://www.pumpworld.com/contents.htm. Reprinted with permission of the Pump World.

Pump World. May 30, 2001b. Centrifugal Pump Operation: Centrifugal Pump Components. [Online]. Available URL: http://www.pumpworld.com/centrif1.htm. Reprinted with permission of the Pump World.

Pump World. May 30, 2001c. Positive Displacement Pump Operation: The Basic Operating Principle [Online]. Available URL: http://www.pumpworld.com/positive_displacement_pump_basic.htm. Reprinted with permission of the Pump World.

Pump World. May 30, 2001d. *Positive* [Online]. Available URL: http://www.pumpworld.com/positive.htm. Reprinted with permission of the Pump World.

Pump World. May 30, 2001e. Positive Displacement Pump Operation: Relief Valves [Online]. Available URL: http://www.pumpworld.com/positive_displacement_pump_valve.htm. Reprinted with permission of the Pump World.

The Atlanta Cardiology Group. June 29, 2001. On of the most efficient pumps lies near the center of your chest! [Online]. Available URL: www.atlcard.com/pump.html.

U.S. Department of Energy (DOE). May 4, 2001. Case Study: Pump Optimization for Sewage Pumping Station. Federal Management Energy Program [Online report]. Available URL: http://www.eere.energy.gov/femp/technologies/eep_centrifugal_pump.cfm

Viking Pump, Incorporated. May 25, 2001. *Rotary Pump Family Tree*. PumpSchool.com [Online]. Available URL: http://www.pumpschool.com/intro/pdtree.htm. Reprinted with permission of Viking Pump, Incorporated.

9.8 Fans

9.8.1 Introduction

The American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) defines a fan as an "air pump that creates a pressure difference and causes airflow. The impeller does the work on the air, imparting to it both static and kinetic energy, varying proportion depending on the fan type" (ASHRAE 1992).

9.8.2 Types of Fans (Bodman and Shelton 1995)

The two general types of fans are axial-flow and centrifugal. With axial-flow fans, the air passes through the fan parallel to the drive shaft. With centrifugal fans, the air makes a right angle turn from the fan inlet to outlet.

9.8.2.1 Axial Fan

Axial-flow fans can be subdivided based on construction and performance characteristics.

• **Propeller fan** – The basic design of propeller fans enhances maintenance to remove dust and dirt accumulations. The fan normally consists of a "flat" frame or housing for mounting, a propeller-shaped blade, and a drive motor. It may be direct drive with the wheel mounted on the motor shaft or belt driven with the wheel mounted on its own shaft and bearings.

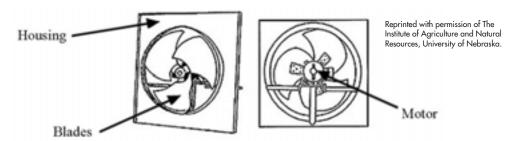


Figure 9.8.1. Propeller direct-drive fan (front and rear view).

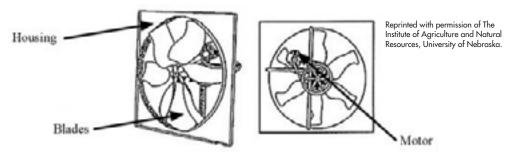


Figure 9.8.2. Propeller belt-drive fan (front and rear view).

• **Tube-axial fans** – A tube-axial fan consists of a tube-shaped housing, a propeller-shaped blade, and a drive motor. Vane-axial fans are a variation of tube-axial fans, and are similar in design and application. The major difference is that air straightening vanes are added either in front of or behind the blades. This results in a slightly more efficient fan, capable of somewhat greater static pressures and airflow rates.

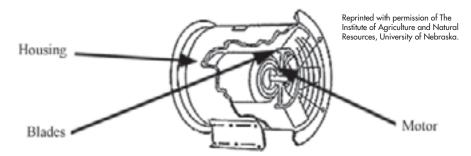


Figure 9.8.3. Tube-axial fan.

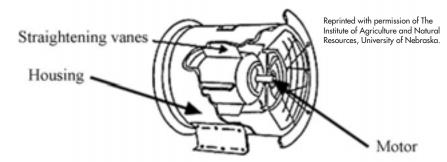


Figure 9.8.4. Vane axial fan.

9.8.2.2 Centrifugal Fans

Often called "squirrel cage" fans, centrifugal fans have an entirely different design (Figure 9.8.5). These fans operate on the principle of "throwing" air away from the blade tips. The blades can be forward curved, straight, or backward curved. Centrifugal fans with backward curved blades are generally more efficient than the other two blade configurations. This design is most often used for aeration applications where high airflow rates and high static pressures are required. Centrifugal fans with forward curved blades

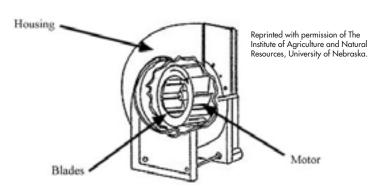


Figure 9.8.5. Centrifugal fan.

have somewhat lower static pressure capabilities but tend to be quieter than the other blade designs. Furnace fans typically use a forward curved blade. An advantage of the straight blade design is that with proper design it can be used to handle dirty air or convey materials.

9.8.3 Key Components

- Impeller or rotor A series of radial blades are attached to a hub. The assembly of the hub and blades is called impeller or rotor. As the impeller rotates, it creates a pressure difference and causes airflow.
- Motor It drives the blades so they may turn. It may be direct drive with the wheel mounted on the motor shaft or belt driven with the wheel mounted on its own shaft and bearings. It is important to note that fans may also be driven by other sources of motive power such as an internal combustion engine, or steam or gas turbine.
- **Housing** Encloses and protects the motor and impeller.

9.8.4 Safety Issues

Continuously moving fresh, uncontaminated air through a confined space is the most effective means of controlling an atmospheric hazard. Ventilation dilutes and displaces air contaminants, assures that an adequate oxygen supply is maintained during entry, and exhausts contaminants created by entry activities such as welding, oxygen-fuel cutting, or abrasive blasting (North Carolina State University 2001).

9.8.5 Cost and Energy Efficiency

In certain situations, fans can provide an effective alternative to costly air conditioning. Fans cool people by circulating or ventilating air. Circulating air speeds up the evaporation of perspiration from the skin so we feel cooler. Ventilating replaces hot, stuffy, indoor air with cooler, fresh, outdoor air. Research shows moving air with a fan has the same affect on personal comfort as lowering the temperature by over 5°F. This happens because air movement created by the fan speeds up the rate at which our body loses heat, so we feel cooler. Opening and closing windows or doors helps the fan move indoor air outside and outdoor air inside, increasing the efficiency of the fan. When it is hot outside, close windows and doors to the outside. In the morning or evening, when outdoor air is cooler, place the fan in front of a window or door and open windows on the opposite side of the room. This draws cooler air through the living area (EPCOR 2001).

In many applications, fan control represents a significant opportunity for increased efficiency and reduced cost. A simple and low-cost means of flow control relies on dampers, either before or after the fan. Dampers add resistance to accomplish reduced flow, while increasing pressure. This increased pressure results in increased energy use for the flow level required. Alternatives to damper flow control methods include physical reductions in fan speed though the use of belts and pulleys or variable speed controllers.

9.8.6 Maintenance of Fans

Typically, fans provide years of trouble-free operation with relatively minimal maintenance. However, this high reliability can lead to a false sense of security resulting in maintenance neglect and eventual failure. Due to their prominence within HVAC and other process systems (without the fan operating, the system shuts down), fans need to remain high on the maintenance activity list.

Most fan maintenance activities center on cleaning housings and fan blades, lubricating and checking seals, adjusting belts, checking bearings and structural members, and tracking vibration.

9.8.7 Diagnostic Tools

- Ultrasonic analyzer Air moving systems emit very distinct sound patterns around bearings and fan blades. In most cases, these sounds are not audible to the unaided ear or are drown-out by other equipment noises. Using an ultrasonic detector, the analyst is able to isolate the frequency of sound being emitted by the bearing or blades. Changes in these ultrasonic wave emissions are indicative of changes in equipment condition-some of these changes can be a precursor to component degradation and failure. More information on ultrasonic analysis can be found in Chapter 6.
- **Vibration analyzer** Within air moving systems, there are many moving parts, most in rotational motion. These parts generate a distinct pattern and level of vibration. Using a vibration analyzer and signature analysis software, the analyst can discern the vibration amplitude of the point on the equipment being monitored. This amplitude is then compared with trended readings. Changes in these readings are indicative of changes in equipment condition. More information on vibration analysis can be found in Chapter 6.

9.8.8 Case Studies

Blower for an Industrial Application

The operation of a centrifugal fan by damper control is energy inefficient as part of the energy supplied to the fan is lost across damper. The damper control has to be minimized by suitably optimizing the capacity of the fan to suit the requirement. One of the best methods to optimize the capacity of the fan is by reducing the rpm of the fan and operate the blower with more damper opening.

Previous Status. An air blower was operated with 30% damper opening. The blower was belt driven. The pressure required for the process was 0.0853 psi. The pressure rise of the blower was 0.1423 psi and the pressure drop across the damper was 0.0569 psi. This indicates an excess capacity/static head available in the blower.

Energy Saving Project. The rpm of the blower was reduced by 20% by suitably changing the pulley. After the reduction in rpm, the damper was operated with 60% to 70% opening.

The replacement of the pulley was taken up during a non-working day. No difficulties were encountered on implementation of the project.

Financial Analysis. The reduction in rpm of the blower and minimizing the damper control resulted in reduction of power consumption by 1.2 kW. The implementation of this project resulted in an annual savings of approximately \$720. The investment made was approximately \$210, which was paid back in under 4 months (Confederation of Indian Industry 2001).

9.8.9 Fans Checklist

	Comments	Maintenance Frequency					
Description		Daily	Weekly		Annually		
System use/sequencing	Turn off/sequence unnecessary equipment	X					
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X					
Observe belts	Verify proper belt tension and alignment			X			
Inspect pulley wheels	Clean and lubricate where required			X			
Inspect dampers	Confirm proper and complete closure control; outside air dampers should be airtight when closed			X			
Observe actuator/linkage control	Verify operation, clean, lubricate, adjust as needed			X			
Check fan blades	Validate proper rotation and clean when necessary			X			
Filters	Check for gaps, replace when dirty - monthly			X			
Check for air quality anomalies	Inspect for moisture/growth on walls, ceilings, carpets, and in/outside of ductwork. Check for musty smells and listen to complaints.			X			
Check wiring	Verify all electrical connections are tight				X		
Inspect ductwork	Check and refasten loose connections, repair all leaks				X		
Coils	Confirm that filters have kept clean, clean as necessary				X		
Insulation	Inspect, repair, replace all compromised duct insulation				X		

9.8.10 References

American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). 1992. ASHRAE HVAC Systems and Equipment, I-P ed, ASHRAE Handbook, Atlanta, Georgia.

Bodman, G.R. and D.P. Shelton. July 2, 2001. *Ventilation Fans: Types and Sizes*. Institute of Agriculture and Natural Resources, University of Nebraska Cooperative Extension, University of Nebraska, May 1995 [Online report]. Available URL: http://www.ianr.unl.edu/pubs/farmbuildings/g1243.htm. Reprinted with permission of the Institute of Agriculture and Natural Resources, University of Nebraska.

Confederation of Indian Industry. August 2, 2001. *Reduction of Gasifier Air Blower Speed.* Energy Efficiency, Green Business Centre [Online report]. Available URL: http://www.energyefficiency-cii.com/glastu.html#2. Reprinted with permission of the Confederation of Indian Industry.

EPCOR. August 17, 2001. Cooling with Fans [Online]. Available URL: http://www.epcor-group.com/Residential/Efficiency.htm. Reprinted with permission of EPCOR.

General Service Administration. 1995. Public Buildings Maintenance Guides and Time Standards. Publication 5850, Public Building Service, Office of Real Property Management and Safety.

North Carolina State University. August 16, 2001. Confined Space Ventilation. Appendix D, Health & Safety Manual, Environmental Health & Safety Center [Online report]. Available URL: http://www2.ncsu.edu/ncsu/ehs/www99/right/handsMan/confined/Appx-D.pdf. Reprinted with permission of North Carolina State University.

9.9 Motors

9.9.1 Introduction

Motor systems consume about 70% of all the electric energy used in the manufacturing sector of the United States. To date, most public and private programs to improve motor system energy efficiency have focused on the motor component. This is primarily due to the complexity associated with motor-driven equipment and the system as a whole. The electric motor itself, however, is only the core component of a much broader system of electrical and mechanical equipment that provides a service (e.g., refrigeration, compression, or fluid movement).

MotorMaster+ Software

An energy-efficient motor selection and management tool, MotorMaster+ 3.0 software includes a catalog of over 20,000 AC motors. Version 3.0 features motor inventory management tools, maintenance log tracking, efficiency analysis, savings evaluation, energy accounting, and environmental reporting capabilities.

Available from:

U.S. Department of Energy
Energy Efficiency and Renewable Energy Network
(800) 363-3732
www.oit.doe.gov/bestpractices/motors/.

Numerous studies have shown that opportunities for efficiency improvement and performance optimization are actually much greater in the other components of the system-the controller, the mechanical system coupling, the driven equipment, and the interaction with the process operation. Despite these significant system-level opportunities, most efficiency improvement activities or programs have focused on the motor component or other individual components (Nadel et al. 2001).

9.9.2 Types of Motors

9.9.2.1 DC Motors

Direct-current (DC) motors are often used in variable speed applications. The DC motor can be designed to run at any speed within the limits imposed by centrifugal forces and commutation considerations. Many machine tools also use DC motors because of the ease with which speed can be adjusted.

All DC motors, other than the relatively small brushless types, use a

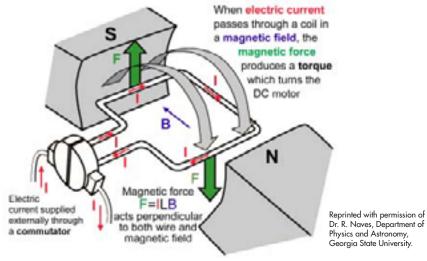


Figure 9.9.1. DC motor.

commutator assembly on the rotor. This requires periodic maintenance and is partly responsible for the added cost of a DC motor when compared to an alternate-current (AC) squirrel-cage induction motor of the same power. The speed adjustment flexibility often justifies the extra cost (Apogee Interactive 2001a).

9.9.2.2 AC Motors (Naves 2001b)

As in the DC motor case, an AC motor has a current passed through the coil, generating a torque on the coil. The design of an AC motor is considerably more involved than the design of a DC motor. The magnetic field is produced by an electromagnet powered by the same AC voltage as the motor coil. The coils that produce the magnetic field are traditionally called the "field coils" while the coils and the solid core that rotates is called the "armature."

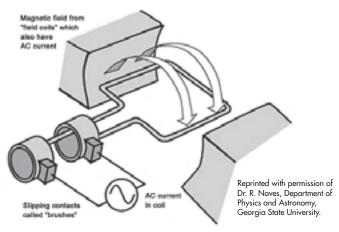


Figure 9.9.2. AC motor.

- Induction motor (VPISU 2001) The induction motor is a three-phase AC motor and is the most widely used machine. Its characteristic features are:
 - Simple and rugged construction.
 - Low cost and minimum maintenance.
 - High reliability and sufficiently high efficiency.
 - Needs no extra starting motor and need not be synchronized.

An induction motor operates on the principle of induction. The rotor receives power due to induction from stator rather than direct conduction of electrical power. When a three-phase voltage is applied to the stator winding, a rotating magnetic field of constant magnitude is produced. This rotating field is produced by the contributions of space-displaced phase windings carrying appropriate time displaced currents. The rotating field induces an electromotive force (emf).

Synchronous motor (Apogee Interactive 2001b) – The most obvious characteristic of a synchronous motor is its strict synchronism with the power line frequency. The reason the industrial user is likely to prefer a synchronous motor is its higher efficiency and the opportunity for the user to adjust the motor's power factor.

A specially designed motor controller performs these operations in the proper sequence and at the proper times during the starting process.

9.9.3 Key Components

9.9.3.1 DC Motor (The World Book Encyclopedia 1986)

- **Field pole** The purpose of this component is to create a steady magnetic field in the motor. For the case of a small DC motor, a permanent magnet, field magnet, composes the field structure. However, for larger or more complex motors, one or more electromagnets, which receive electricity from an outside power source, is/are the field structure.
- Armature When current goes through the armature, it becomes an electromagnet. The armature, cylindrical in shape, is linked to a drive shaft in order to drive the load. For the case of a small DC motor, the armature rotates in the magnetic field established by the poles, until the north and south poles of the magnets change location with respect to the armature. Once this happens, the current is reversed to switch the south and north poles of the armature.
- **Commutator** This component is found mainly in DC motors. Its purpose is to overturn the direction of the electric current in the armature. The commutator also aids in the transmission of current between the armature and the power source.

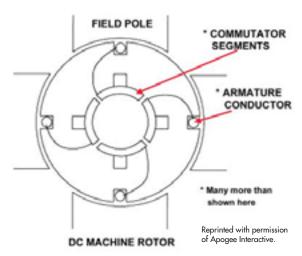


Figure 9.9.3. Parts of a direct current motor.

9.9.3.2 AC Motor

Rotor

- Induction motor (VPISU 2001) – Two types of rotors are used in induction motors: squirrel-cage rotor and wound rotor.

A squirrel-cage rotor consists of thick conducting bars embedded in parallel slots. These bars are short-circuited at both ends by means of short-circuiting rings. A wound rotor has three-phase, double-layer, distributed winding. It is wound for as many poles as the stator. The three phases are wyed internally and the other ends are connected to slip-rings mounted on a shaft with brushes resting on them.

Synchronous motor – The main difference between the synchronous motor and the induction motor is that the rotor of the synchronous motor travels

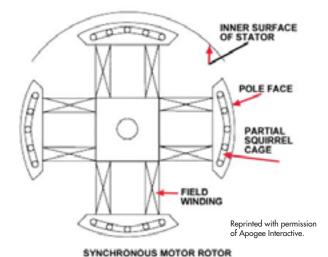


Figure 9.9.4. Parts of an alternating current motor.

at the same speed as the rotating magnetic field. This is possible because the magnetic field of the rotor is no longer induced. The rotor either has permanent magnets or DC-excited currents, which are forced to lock into a certain position when confronted with another magnetic field.

• Stator (VPISU 2001)

- Induction motor The stator is made up of a number of stampings with slots to carry three-phase windings. It is wound for a definite number of poles. The windings are geometrically spaced 120 degrees apart.
- Synchronous motor The stator produces a rotating magnetic field that is proportional to the frequency supplied.

9.9.4 Safety Issues (Operators and Consulting Services Incorporated 2001)

Electric motors are a major driving force in many industries. Their compact size and versatile application potentials make them a necessity. Motors are chosen many times because of the low vibration characteristics in driving equipment because of the potential extended life of the driven equipment. The higher rpm and small size of a motor will also make it a perfect fit for many applications.

Motors can be purchased for varying application areas such as for operating in a potentially gaseous or explosive area. When purchasing a motor, be sure to check the classification of the area, you may have a motor that does not meet the classification it is presently in! For example, a relatively new line of motors is being manufactured with special external coatings that resist the elements. These were developed because of the chemical plant setting in which highly corrosive atmospheres were deteriorating steel housings. They are, for the most part, the same motors but have an epoxy or equivalent coating.

9.9.5 Cost and Energy Efficiency (DOE 2001a)

An electric motor performs efficiently only when it is maintained and used properly. Electric motor efficiencies vary with motor load; the efficiency of a constant speed motor decreases as motor load decreases. Below are some general guidelines for efficient operations of electric motors.

- Turn off unneeded motors Locate motors that operate needlessly, even for a portion of the time they are on and turn them off. For example, there may be multiple HVAC circulation pumps operating when demand falls, cooling tower fans operating when target temperatures are met, ceiling fans on in unoccupied spaces, exhaust fans operating after ventilation needs are met, and escalators operating after closing.
- Reduce motor system usage The efficiency of mechanical systems affects the run-time of motors.
 For example, reducing solar load on a building will reduce the amount of time the air handler motors would need to operate.
- Sizing motors is important Do not assume an existing motor is properly sized for its load, especially when replacing motors. Many motors operate most efficiently at 75% to 85% of full load rating. Under-sizing or over-sizing reduces efficiency. For large motors, facility managers may

want to seek professional help in determining the proper sizes and actual loadings of existing motors. There are several ways to estimate actual motor loading: the kilowatt technique, the amperage ratio technique, and the less reliable slip technique. All three are supported in the Motor Master Plus software.

• Replacement of motors versus rewinding — Instead of rewinding small motors, consider replacement with an energy-efficient version. For larger motors, if motor rewinding offers the lowest life-cycle cost, select a rewind facility with high quality standards to ensure that motor efficiency is not adversely affected. For sizes of 10 hp or less, new motors are generally cheaper than rewinding. Most standard efficiency motors under 100 hp will be cost-effective to scrap when they fail, provided they have sufficient runtime and are replaced with energy-efficient models.

Strategies to Reduce Motor System Usage

- Reduce loads on HVAC systems.
 - Improve building shell.
 - Manage restorations better.
 - Improve HVAC conditions.
 - Check refrigerant charge.
- Reduce refrigeration loads.
 - Improve insulation.
 - Add strip curtains on doors.
 - Calibrate control setpoints.
 - Check refrigerant charge.
- Check ventilation systems for excessive air.
 - Re-sheave fan if air is excessive.
 - Downsize motors, if possible.
- Improve compressed air systems.
 - Locate and repair compressed air leaks.
 - Check air tool fittings for physical damage.
 - Turn off air to tools when not in use.
- Repair duct leaks.

9.9.6 Maintenance of Motors

Preventative and predictive maintenance programs for motors are effective practices in manufacturing plants. These maintenance procedures involve a sequence of steps plant personnel use to prolong motor life or foresee a motor failure. The technicians use a series of diagnostics such as motor temperature and motor vibration as key pieces of information in learning about the motors. One way a technician can use these diagnostics is to compare the vibration signature found in the motor with the failure mode to determine the cause of the failure. Often failures occur well before the expected design life span of the motor and studies have shown that mechanical failures are the prime cause of premature electrical failures. Preventative maintenance takes steps to improve motor performance and to extend its life. Common preventative tasks include routine lubrication, allowing adequate ventilation, and ensuring the motor is not undergoing any type of unbalanced voltage situation.

The goal of predictive maintenance programs is to reduce maintenance costs by detecting problems early, which allows for better maintenance planning and less unexpected failures. Predictive maintenance programs for motors observe the temperatures, vibrations, and other data to determine a time for an overhaul or replacement of the motor (Barnish et al. 2001).

Consult each motor's instructions for maintenance guidelines. Motors are not all the same. Be careful not to think that what is good for one is good for all. For example, some motors require a periodic greasing of the bearings and some do not (Operators and Consulting Services Incorporated 2001).

General Requirements for Safe and Efficiency Motor Operation (DOE 2001a)

- 1. Motors, properly selected and installed, are capable of operating for many years with a reasonably small amount of maintenance.
- 2. Before servicing a motor and motor-operated equipment, disconnect the power supply from motors and accessories. Use safe working practices during servicing of the equipment.
- 3. Clean motor surfaces and ventilation openings periodically, preferably with a vacuum cleaner. Heavy accumulations of dust and lint will result in overheating and premature motor failure.
- 4. Facility managers should inventory all motors in their facilities, beginning with the largest and those with the longest run-times. This inventory enables facility managers to make informed choices about replacement either before or after motor failure. Field testing motors prior to failure enables the facility manager to properly size replacements to match the actual driven load. The software mentioned below can help with this inventory.

9.9.7 Diagnostic Tools

- Thermography An infrared thermometer or camera allows for an accurate, non-contact assessment of temperature. Applications for motors include bearing and electrical contact assessments on motor systems and motor control centers. More information on thermography can be found in Chapter 6.
- Ultrasonic analyzer Electric motor systems emit very distinct sound patterns around bearings. In most cases, these sounds are not audible to the unaided ear or are drown-out by other equipment noises. Using an ultrasonic detector, the analyst is able to isolate the frequency of sound being emitted by the bearing. Changes in these ultrasonic wave emissions are indicative of changes in equipment condition-some of these changes can be a precursor to component degradation and failure. More information on ultrasonic analysis can be found in Chapter 6.
- **Vibration analyzer** The rotational motion within electric motors generates distinct patterns and levels of vibration. Using a vibration analyzer and signature analysis software, the analyst can discern the vibration amplitude of the point on the motor being monitored. This amplitude is then compared with trended readings. Changes in these readings are indicative of changes in equipment condition. More information on vibration analysis can be found in Chapter 6.
- Other motor analysis Motor faults or conditions including winding short-circuits, open coils, improper torque settings, as well as many mechanical problems can be diagnosed using a variety of motor analysis techniques. These techniques are usually very specialized to specific motor types and expected faults. More information on motor analysis techniques can be found in Chapter 6.

9.9.8 Electric Motors Checklist

		Maintenance Frequency				
Description	Comments	Daily	Weekly		Annually	
Motor use/sequencing	Turn off/sequence unnecessary motors	X				
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X				
Motor condition	Check the condition of the motor through temperature or vibration analysis and compare to baseline values		X			
Check lubrication	Assure that all bearings are lubricated per the manufacture's recommendation			X		
Check packing	Check packing for wear and repack as necessary. Consider replacing packing with mechanical seals.			X		
Motor alignment	Aligning the motor coupling allows for efficient torque transfer to the pump			X		
Check mountings	Check and secure all motor mountings			X		
Check terminal tightness	Tighten connection terminals as necessary			X		
Cleaning	Remove dust and dirt from motor to facilitate cooling			X		
Check bearings	Inspect bearings and drive belts for wear. Adjust, repair, or replace as necessary.				X	
Motor condition	Checking the condition of the motor through temperature or vibration analysis assures long life				X	
Check for balanced three-phase power	Unbalanced power can shorten the motor life through excessive heat build up				X	
Check for over-voltage or under-voltage conditions	Over- or under-voltage situations can shorten the motor life through excessive heat build up				X	

9.9.9 References

Apogee Interactive. July 5, 2001a. *Characteristics of Direct Current Motors*. Electrical Systems [Online]. Available URL: http://oge.apogee.net/pd/dmdc.htm. Reprinted with permission of Apogee Interactive, www.apogee.net.

Apogee Interactive. July 5, 2001b. *Characteristics of a Synchronous Motor*. Electrical Systems [Online]. Available URL: http://oge.apogee.net/pd/dmsm.htm. Reprinted with permission of Apogee Interactive, www.apogee.net.

Barnish, T.J., M.R. Muller, and D.J. Kasten. June 14, 2001. *Motor Maintenance: A Survey of Techniques and Results*. Presented at the 1997 ACEEE Summer Study on Energy Efficiency in Industry, July 8-11, 1997, Saratoga Springs, New York, Office of Industrial Productivity and Energy Assessment,

Confederation of Indian Industry. July 15, 2001. Replacement with Correct Size Combustion Air Blower in Kiln. Case Studies [Online report]. Available URL: http://www.energyefficiency-cii.com/glastu.html#2. Reprinted with permission of Confederation of Indian Industry.

Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey [Online report]. Available URL: http://oipea-www.rutgers.edu/documents/papers/aceee1_paper.html. Reprinted with permission of Office of Industrial Productivity and Energy Assessment, Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey.

Franklin Electric. July 12, 2001. *All Motors*. Page 37, Maintenance, AIM Manual, Technical Service [Online report]. Available URL: http://www.fele.com/Manual/AIM_37.htm. Reprinted with permission of Franklin Electric, www.franklin-electric.com.

General Service Administration. 1995. *Public Buildings Maintenance Guides and Time Standards*. Publication 5850, Public Building Service, Office of Real Property Management and Safety.

Nadel, S.R., N. Elliott, M. Shepard, S. Greenberg, G. Katz, and A.T. de Almeida. Forthcoming (2001). *Energy-Efficient Motor Systems: A Handbook on Technology, Program, and Policy Opportunities*. 2nd ed. Washington, D.C. American Council for an Energy-Efficient Economy. Reprinted with permission of American Council for an Energy-Efficient Economy.

Naves, R. July 8, 2001. DC Motor. Electricity and Magnetism, HyperPhysics, Department of Physics and Astronomy, Georgia State University [Online]. Available URL: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motdc.html#c1. Reprinted with permission Dr. R. Naves, Department of Physics and Astronomy, Georgia State University.

Naves, R. July 8, 2001. AC Motor. Electricity and Magnetism, HyperPhysics, Department of Physics and Astronomy, Georgia State University [Online]. Available URL: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/motorac.html. Reprinted with permission Dr. R. Naves, Department of Physics and Astronomy, Georgia State University.

Operators and Consulting Services Incorporated. May 30, 2001. *Electric Motors*. Oilfield Machinery Maintenance Online [Online]. Available URL: http://www.oilmachineryforum.com/electric.htm. Reprinted with permission of Operators and Consulting Services Incorporated.

The World Book Encyclopedia. 1986. Motors. Volume 13, World Book, Inc.

U.S. Department of Energy (DOE). August 12, 2001. *Greening Federal Facilities:* An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers. 2nd ed., Part V Energy Systems, 5.7 Electric Motors and Drives, Federal Management Energy Program [Online report]. Available URL: http://www.nrel.gov/docs/fy01osti/29267.pdf.

U.S. Department of Energy (DOE). July 11, 2001. *Personal Injury in Air Handling Unit*, 1998-CH-AMES-0001, February 4, 1998, Lessons Learned Database, Chicago Operations Office [Online Report]. Available URL: http://tis.eh.doe.gov/ll/lldb/detail.CFM?Lessons__IdentifierIntern=1998Y%2D1998%2DCH%2DAMES%2D0001.

Virginia Polytechnic Institute and State University and Iowa State University. July 14, 2001. *Induction Motor*, Powerlearn Program funded by the National Science Foundations and the Electric Power Research Institute [Online]. Available URL: http://powerlearn.ece.vt.edu/modules/PE2/index.html. Reprinted with permission of Virginia Polytechnic Institute and State University.

9.10 Air Compressors

9.10.1 Introduction

Compressed air, along with gas, electricity, and water, is essential to most modern industrial and commercial operations. It runs tools and machinery, provides power for material handling systems, and ensures clean, breathable air in contaminated environments. It is used by virtually every industrial segment from aircraft and automobiles to dairies, fish farming, and textiles.

The Compressed Air Challenge™

The Compressed Air Challenge™ is a national collaborative formed in October 1997 to assemble state-of-the-art information on compressed air system design, performance, and assessment procedures.

Available from: http://www.knowpressure.org.

A plant's expense for its compressed air is often thought of only in terms of the cost of the equipment. Energy costs, however, represent as much as 70% of the total expense in producing compressed air. As electricity rates escalate across the nation and the cost of maintenance and repair increases, selecting the most efficient and reliable compressor becomes critical (Kaeser Compressors 2001a).

9.10.2 Types of Air Compressors (Dyer and Maples 1992)

The two general types of air compressors are positive displacement and centrifugal.

9.10.2.1 Positive Displacement

• Rotary screw compressor – The main element of the rotary screw compressor is made up of two close clearance helical-lobe rotors that turn in synchronous mesh. As the rotors revolve, the gas is forced into a decreasing inter-lobe cavity until it reaches the discharge port. In lubricated units, the male rotor drives the female and oil is injected into the cylinder serving as a lubricant, coolant, and as an oil seal to reduce back slippage. On non-lubricated types, timing gears are used to drive the rotors and multistaging is necessary to prevent gas temperatures from going too high.

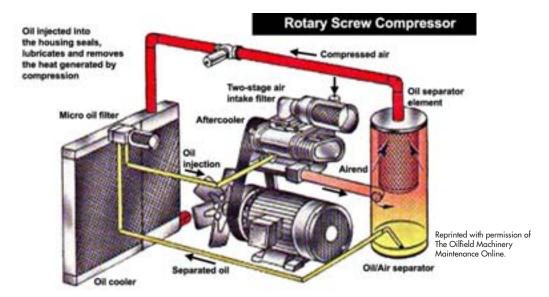


Figure 9.10.1. Rotary screw compressor.

• **Reciprocating compressor** – A reciprocating compressor is made up of a cylinder and a piston. Compression is accomplished by the change in volume as the piston moves toward the "top" end of the cylinder. This compression may be oil-lubricated or, in some cases, it may require little or no lubrication (oil-free) in the cylinder.

The cylinder in the reciprocating machines may be air cooled or water cooled. Water cooling is used on the larger units. This cooling action is very important to increase compressor life and to keep maintenance and repairs low.

Multiple stage compressors have a minimum of two pistons. The first compresses the gas to an intermediate pressure. Intercooling of the gas before entering the second stage usually follows the first stage compression. Two stage units allow for more efficient and cooler operating compressors, which increases compressor life.

9.10.2.2 Centrifugal Compressor

The compression action is accomplished when the gas enters the center of rotation and is accelerated as it flows in an outward direction. This gas velocity is then transferred into a pressure rise. Part of the pressure rise occurs in the rotor and part in a stationary element called the diffuser. The rotating element can have either forward curved blades, radial blades, or backward blades.

The centrifugal compressor will usually have more than one stage of compression with intercooling between each stage. One of the drawbacks of this machine is its inability to deliver part-load flow at overall efficiencies as high as other types of compressors. Many people consider the centrifugal machine a base-load machine.

9.10.3 Key Components (Dyer and Maples 1992)

- Positive Displacement Air Compressor
 - Cylinder Chamber where the compression process takes place by the change in its volume as the piston moves up and down.
 - Piston Component located inside the cylinder directly responsible for the compression of air.
 - Crankshaft Converts rotational motion generated by the motor to unidirectional motion for the piston.
 - Connecting rod Connects the crankshaft with the piston.
 - Inlet and exhaust valves Control the amount of air going in and out of the cylinder.

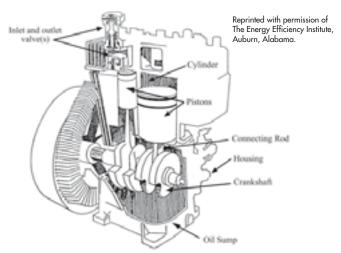


Figure 9.10.2. Typical single acting two-stage compressor.

Rotary Screw Compressor

- Helical-lobe rotors – The main elements of this type of compressor where two close clearance helical-lobe rotors turn in synchronous mesh. As the rotors revolve, the gas is forced into a decreasing "inter-lobe cavity until it reaches the discharge port (Figure 9.10.3).

• Centrifugal Compressor

- Rotating Impeller – Imparts velocity to the air, which is converted to pressure.

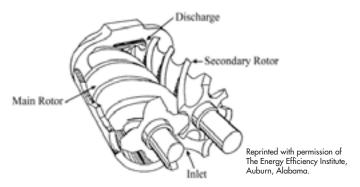


Figure 9.10.3. Helical-lobe rotors.

9.10.4 Safety Issues (UFEHS 2001)

9.10.4.1 General Safety Requirements for Compressed Air

All components of compressed air systems should be inspected regularly by qualified and trained employees. Maintenance superintendents should check with state and/or insurance companies to determine if they require their own inspection of this equipment. Operators need to be aware of the following:

- Air receivers The maximum allowable working pressures of air receivers should never be
 exceeded except when being tested. Only hydrostatically tested and approved tanks shall be used
 as air receivers.
 - Each air receiver shall be equipped with at least one pressure gauge and an ASME safety valve of the proper design.
 - A safety (spring loaded) release valve shall be installed to prevent the receiver from exceeding the maximum allowable working pressure.

• Air distribution lines

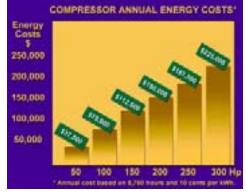
- Air lines should be made of high quality materials, fitted with secure connections.
- Hoses should be checked to make sure they are properly connected to pipe outlets before use.
- Air lines should be inspected frequently for defects and any defective equipment repaired or replaced immediately.
- Compressed air lines should be identified as to maximum working pressures (psi) by tagging or marking pipeline outlets.

• Pressure regulation devices

- Valves, gauges, and other regulating devices should be installed on compressor equipment in such a way that cannot be made inoperative.
- Air tank safety valves should be set no less than 15 psi or 10% (whichever is greater) above the operating pressure of the compressor but never higher than the maximum allowable working pressure of the air receiver.

• Air compressor operation

- Air compressor equipment should be operated only by authorized and trained personnel.
- The air intake should be from a clean, outside, fresh air source. Screens or filters can be used to clean the air.
- Air compressors should never be operated at speeds faster than the manufacturers recommendation.
- Moving parts, such as compressor flywheels, pulleys, and belts that could be hazardous should be effectively guarded.


9.10.5 Cost and Energy Efficiency (Kaeser Compressors 2001b)

It takes 7 to 8 hp of electricity to produce 1 hp worth of air force. Yet, this high-energy cost quite often is overlooked. Depending on plant location and local power costs, the annual cost of electrical power can be equal to-or as much as two times greater than-the initial cost of the air compressor. Over a 10-year operating period, a 100-hp compressed air system that you bought for \$40,000 will accumulate up to \$800,000 in electrical power costs. Following a few simple steps can significantly reduce energy costs by as much as 35%.

9.10.5.1 Identify the Electrical Cost of Compressed Air

To judge the magnitude of the opportunities that exist to save electrical power costs in your compressed air system, it is important to identify the electrical cost of compressed air. Chart 1 shows the relationship between compressor hp and energy cost. In addition, consider the following:

 Direct cost of pressure – Every 10 psig increase of pressure in a plant system requires about 5% more power to produce. For example: A 520 cubicfeet-per-minute (cfm) compressor,

Reprinted with permission of Kaeser Compressors, Inc., Fredericksburg, Virginia.

Chart 1

delivering air at 110 pounds per-square-inch-gage (psig), requires about 100 horsepower (hp). However, at 100 psig, only 95 hp is required. Potential power cost savings (at 10 cents per kWh; 8,760 hr/year) is \$3,750/year.

• Indirect cost of pressure – System pressure affects air consumption on the use or demand side. The air system will automatically use more air at higher pressures. If there is no resulting increase in

productivity, air is wasted. Increased air consumption caused by higher than needed pressure is called *artificial demand*. A system using 520 cfm at 110 psig inlet pressure will consume only 400 cfm at 80 psig. The potential power cost savings (520 cfm - 400 cfm = 120 cfm, resulting in 24 hp, at 10 cents/kWh; 8,760 hr/year) is \$18,000/year. Note: Also remember that the leakage rate is significantly reduced at lower pressures, further reducing power costs.

General Notes on Air Compressors (OIT 1995)

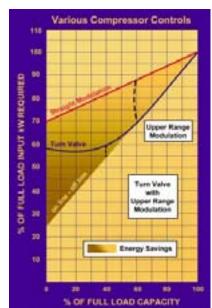

- Screw air compressors use 40% to 100% of rated power unloaded.
- Reciprocating air compressors are more efficient, but also more expensive.
- About 90% of energy becomes heat.
- Rule of thumb: roughly 20 hp per 100 cfm at 100 psi.
- Use low-pressure blowers versus compressed air whenever possible.
- Second, third, weekend shifts may have low compressed air needs that could be served by a smaller compressor.
- Outside air is cooler, denser, easier to compress than warm inside air.
- Friction can be reduced by using synthetic lubricants.
- Older compressors are driven by older less efficient motors.
- The cost of wasted air volume –
 Each cubic feet per meter of air volume wasted can be translated into extra compressor horsepower and is an identifiable cost. As shown by Chart 1, if this waste is recovered, the result will be \$750/hp per year in lower energy costs.
- Select the most efficient demand side The magnitude of the above is solely dependent on the ability of the compressor control to translate reduced air flow into lower electrical power consumption.

Chart 2 shows the relationship between the full load power required for a compressor at various air demands and common control types. It becomes apparent that the on line-off line control (dual control) is superior to other controls in translating savings in air consumption into real power savings. Looking at our example of reducing air consumption from 520 cfm to 400 cfm (77%), the compressor operating on dual control requires 83% of full load power. That is 12% less energy than when operated on modulation control. If the air consumption drops to 50%, the difference (dual versus modulation) in energy consumption is increased even further, to 24%.

9.10.5.2 Waste Heat Recovered from Compressors can be Used for Heating (Kaeser Compressors 2001c)

The heat generated by air compressors can be used effectively within a plant for space heating and/or process water heating. Considerable energy savings result in short payback periods.

- Process heating Heated water is available from units equipped with water-cooled oil coolers and after-coolers. Generally, these units can effectively discharge the water at temperatures between 130°F and 160°F.
- Space heating Is essentially accomplished by ducting the heated cooling air from the compressor package to an area that requires heating. If ductwork is used, be careful not

Reprinted with permission of Kaeser Compressors, Inc., Fredericksburg, Virginia.

Chart 2

to exceed the manufacturer's maximum back-pressure allowance. When space heating is used in the winter, arrangements should be made in the ductwork to return some of the heated air to the compressor room in order to maintain a 60°F room temperature. This ensures that the air discharged is at comfortable levels.

9.10.5.3 Use of Flow Controllers

Most compressed air systems operate at artificially high pressures to compensate for flow fluctuations and downstream pressure drops caused by lack of "real" storage and improperly designed piping systems. Even if additional compressor capacity is available, the time delay caused by bringing the necessary compressor(s) on-line would cause unacceptable pressure drop.

Operating at these artificially high pressures requires up to 25% more compressor capacity than actually needed. This 25% in wasted operating cost can be eliminated by reduced leakage and elimination of artificial demand.

A flow controller separates the supply side (compressors, dryers, and filters) from the demand side (distribution system). It creates "real" storage within the receiver tank(s) by accumulating compressed air without delivering it downstream. The air pressure only increases upstream of the air receiver, while the flow controller delivers the needed flow downstream at a constant, lower system pressure. This reduces the actual flow demand by virtually eliminating artificial demand and substantially reducing leakage.

9.10.5.4 Importance of Maintenance to Energy Savings

- Leaks are expensive. Statistics show that the average system wastes between 25% and 35% to leaks. In a compressed air system of 1,000 cfm, 30% leaks equals 300 cfm. That translates into savings of 60 hp or \$45,000 annually.
- A formalized program of leak monitoring and repair is essential to control costs. As a start, monitor all the flow needed during off periods.
- Equip maintenance personnel with proper leak detection equipment and train them on how to
 use it. Establish a routine for regular leak inspections. Involve both maintenance and production
 personnel.
- Establish accountability of air usage as part of the production expense. Use flow controllers and sequencers to reduce system pressure and compressed air consumption.
- A well-maintained compressor not only serves you better with less downtime and repairs, but will save you electrical power costs too.

9.10.6 Maintenance of Air Compressors (Oil Machinery Maintenance Online 2001)

Maintenance of your compressed air system is of great importance and is often left undone or half done. Neglect of an air system will ultimately "poison" the entire downstream air system and cause headaches untold. Clean dry air supplies start at the air compressor package. The small amount of time you spend maintaining the system is well worth the trouble.

9.10.6.1 General Requirements for a Safe and Efficient Air Compressor

- Always turn power off before servicing.
- Compressor oil and oil cleanliness:
 - Change the oil according to manufacturer's recommendations.
 - Use a high-quality oil and keep the level where it's supposed to be.
 - Sample the oil every month.
- Condensate control
 - Drain fluid traps regularly or automatically.
 - Drain receiving tanks regularly or automatically.
 - Service air-drying systems according to manufacturer's recommendations.
- Keep air inlet filters clean.
- Keep motor belts tight.
- Minimize system leaks.

<u>Problem</u>	Probable Cause	Remedial Action
Low pressure at point of use	Leaks in distribution piping	Check lines, connections, and valve for leaks; clean or replace filter elements
	Clogged filter elements	
	Fouled dryer heat exchanger	Clean heat exchanger
	Low pressure at compressor discharge	
Low pressure at compressor discharge	For systems with modulating load controls, improper adjustment of air capacity control	Follow manufacturer's recommendation for adjustment of control
	Worn or broken valves	Check valves and repair or replace as required
	Improper air pressure switch setting	Follow manufacturer's recommendations for setting air pressure switch
Water in lines	Failed condensate traps	Clean, repair, or replace the trap
	Failed or undersized compressed air dryer	Repair or replace dryer
Liquid oil in air lines	Faulty air/oil separation	Check air/oil separation system; change separator element
Dirt, rust, or scale in air lines	In the absence of liquid water, normal aging of the air lines	Install filters at point of use

<u>Problem</u>	<u>Probable Cause</u>	Remedial Action
Excessive service to load/hour ratio	System idling too much	For multiple compressor systems, consider sequencing controls to mir mize compressor idle time; adjust idle time according to manufacturer recommendations
	Improper pressure switch setting	Readjust according to manufacturer recommendations
Elevated compressor temperature	Restricted air flow	Clean cooler exterior and check inl filter mats
	Restricted water flow	Check water flow, pressure, and quality; clean heat exchanger as needed
	Low oil level	Check compressor oil level; add oil as required
	Restricted oil flow	Remove restriction; replace parts as required
	Excessive ambient temperatures	Improper ventilation to compressor, check with manufacturer to determine maximum operating

9.10.7 Diagnostic Tools

- **Ultrasonic analyzer** Compressed gas systems emit very distinct sound patterns around leakage areas. In most cases, these sounds are not audible to the unaided ear or are drown-out by other equipment noises. Using an ultrasonic detector, the analyst is able to isolate the frequency of sound being emitted by the air or gas leak. The ultrasonic detector represents an accurate and cost effective means to locate leaks in air/gas systems. More information on ultrasonic analysis can be found in Chapter 6.
- **Vibration analyzer** Within a compressor, there are many moving parts; some in rotational motion and some in linear motion. In either case, these parts generate a distinct pattern and level of vibration. Using a vibration analyzer and signature analysis software, the analyst can discern the vibration amplitude of the point on the equipment being monitored. This amplitude is then compared with trended readings. Changes in these readings are indicative of changes in equipment condition. More information on vibration analysis can be found in Chapter 6.

9.10.8 Case Study

Air Compressor Leakage (OIT 1995)

The cost of compressed air leaks is the energy cost to compress the volume of the lost air from atmospheric pressure to the compressor operating pressure. The amount of lost air depends on the line pressure, the compressed air temperature and the point of the leak, the air temperature at the compressor inlet, and the estimated area of the leak.

A study of a 75-hp compressor that operates 8,520 hours per year was shown to have a leakage rate of 24%. The majority of these leaks were due to open, unused lines. The compressor, a single-stage screw type, provides compressed air at 115 psi, is 91.5% efficient, and operates with electricity costing \$14.05 per million Btu.

The study identified eight major leaks ranging in size from 1/16 to 1/8 inches in diameter. The calculated total annual cost of these leaks was \$5,730.

Correcting the leaks in this system involved the following:

- Replacement of couplings and/r hoses.
- Replacement of seals around filters.
- Repairing breaks in compressed-air lines.

The total cost of the repairs was \$460. Thus, the cost savings of \$5,730 would pay for the implementation cost of \$460 in about a month.

9.10.9 Air Compressors Checklist

		Maintenance Frequency			
Description	Comments	Daily	Weekly	Monthly	Annually
Compressor use/sequencing	Turn off/sequence unnecessary compressors	X			
Overall visual inspection	Complete overall visual inspection to be sure all equipment is operating and safety systems are in place	X			
Leakage assessment	Look for and report any system leakages	X			
Compressor operation	Monitor operation for run time and temperature variance from trended norms	Х			
Dryers	Dryers should be observed for proper function	X			
Compressor ventilation	Make sure proper ventilation is available for compressor and inlet	X			
Compressor lubricant	Note level, color, and pressure. Compare with trended values.	X			
Condensate drain	Drain condensate from tank, legs, and/or traps	X			
Operating temperature	Verify operating temperature is per manufacturer specification	X			
Pressure relief valves	Verify all pressure relief valves are functioning properly		X		
Check belt tension	Check belt tension and alignment for proper settings		X		
Intake filter pads	Clean or replace intake filter pads as necessary		X		

Air Compressors Checklist (contd)

		Maintenance Frequency			ncy
Description	Comments	Daily	Weekly	Monthly	Annually
Air-consuming device check	All air-consuming devices need to be inspected on a regular basis for leakage. Leakage typically occurs in: • Worn/cracked/frayed hoses • Sticking air valves • Cylinder packing		X		
Drain traps	Clean out debris and check operation		X		
Motor bearings	Lubricate motor bearings to manufacturer's specification			X	
System oil	Depending on use and compressor size, develop periodic oil sampling to monitor moisture, particulate levels, and other contamination. Replace oil as required.			X	
Couplings	Inspect all couplings for proper function and alignment				X
Shaft seals	Check all seals for leakage or wear				X
Air line filters	Replace particulate and lubricant removal elements when pressure drop exceeds 2-3 psid				X
Check mountings	Check and secure all compressor mountings				X

9.10.10 References

Dyer, D.F. and G. Maples. 1992. Electrical Efficiency Improvement. Energy Efficiency Institute, Auburn.

Kaeser Compressors, Inc. July 29, 2001a. *Getting the Most for Your Money: Types of Compressors*. Air Compressor Guide [Online Report]. Available URL: http://www.maintenanceresources.com/ReferenceLibrary/AirCompressors/kaeserpage1.htm.

Kaeser Compressors, Inc. July 29, 2001b. *Evaluating Compressor Efficiency*. Air Compressor Guide [Online Report]. Available URL: http://www.maintenanceresources.com/ReferenceLibrary/AirCompressors/kaeserpage7.htm.

Kaeser Compressors, Inc. July 29, 2001c. Waste Heat Recovery and the Importance of Maintenance. Air Compressor Guide [Online Report]. Available URL: http://www.maintenanceresources.com/ReferenceLibrary/AirCompressors/kaeserpage9.htm.

Kaeser Compressors, Inc. July 29, 2001d. *Getting the Most for Your Money: Troubleshooting*. Air Compressor Guide [Online Report]. Available URL: http://www.maintenanceresources.com/ReferenceLibrary/AirCompressors/kaeserpage5.htm.

OIT. 1995. Modern Industrial Assessments: A Training Manual. Industrial Assessment Manual from the Office of Productivity and Energy Assessment at the State University of New Jersey, Rutgers, for the U.S. Department of Energy Office of Industrial Technology.

Oil Machinery Maintenance Online. July 16, 2001. Air Compressors [Online]. Available URL: http://www.oilmachineryforum.com/air.htm.

University of Florida Environmental Health and Safety (UFEHS). July 26, 2001. Compressed Air Safety: General safety requirements for compressed air [Online]. Available URL: http://www.ehs.ufl.edu/General/Shop/comp_air.htm.

9.11 Lighting

9.11.1 Introduction

Recent studies reveal that over 20% of the nation's electricity consumption is related to various types of lighting products and systems. Advanced energy saving technologies are readily available to reduce both the connected load and energy consumption, but are only effective if they are properly installed, calibrated, and maintained. Improvements in lighting efficiencies are so rapid that it can be cost-effective to implement upgrades, retrofits or redesigns to lighting systems that are only 5 to 10 years old. In addition to everyday maintenance and operation of lighting systems, this section discusses the important issues of commissioning and regular reevaluation of system components with a view toward upgrades.

9.11.2 Systems and Components

A lighting system consists of light sources, the ballasts or other devices that regulate the power that drives electric lights, the luminaire housing with components that hold the sources and direct and shield the light, and lighting controls that manipulate the time or intensity of lighting systems.

9.11.2.1 Light Sources

Natural light sources include the sun and daylight (light from the sky). The electric light sources most common to federal buildings include incandescent/halogen, fluorescent, high intensity discharge, and light emitting diodes. Characteristics common to light sources include their output, efficiency, life, color, and distribution.

- A. **Daylight/Sunlight** Daylight is an acceptable and desirable light source for building interiors. It uses the light from the sky, or occasionally sunlight reflected off building surfaces. For reasons of glare and thermal gains, direct sunlight should generally be shielded, preferably before it hits the windows. In particular, direct sun penetration should be kept out of work environments. Interior window blinds are almost always needed to control sky glare and sun penetration, even when overhangs exist.
- B. **Electrical Lamps** The lamp is the source of electric light, the device that converts electric power into visible light. Selecting the lamp types is at the heart of a high-quality lighting plan, and central to visual performance, energy conservation, and the appearance of a space. Various light sources have different characteristics, but the basic performance principles include the following:
 - Lumen output the amount of light emitted by a lamp
 - Efficacy the efficiency of lamps in producing light, measured in lumens of light per watt of energy
 - Rated lamp life expected lamp life typically reported in hours
 - Lamp lumen depreciation the loss of light output over time, usually reported as a percentage
 - Color temperature (CCT) and color rendering (CRI) a numerical value related to the appearance of the light and the objects illuminated

Fluorescent lamp advantages, disadvantages, and appropriate uses

Advantages:

- Very high efficacy T8/T5 lamps are 80 to 98 lumens per watt
- Flexible source with a wide range of colors, (75 to 98 CRI), sizes, and shapes
- Very long lamp life: 20,000 to 30,000 hours
- Cool operation
- Low diffused surface brightness

Disadvantages:

- Require a compatible ballast
- Dimming requires a more expensive ballast
- Temperatures can affect start-up, lumen output, and lamp life
- Not a point source if narrow beam distribution is required

Appropriate Uses:

 Fluorescent and compact fluorescent lamps are appropriate for most of the applications that federal facilities managers encounter in their buildings Fluorescent lamps generate their light by using electricity to excite a conductive vapor of mercury and an inert gas. The resultant ultraviolet light strikes a phosphor coating on the inside of the tube, causing it to glow. The elements used in the phosphor coating control the lamp's color.

T12 lamps – Linear fluorescent lamps with a 1-1/2 inch diameter (12/8 of an inch). They are now considered obsolete for most new applications. These were the standard fluorescent lamps until T8 lamps came on the market in the 1980s.

T8 lamps – Linear fluorescent lamps with a 1 inch diameter (8/8 of an inch). These are the workhorse of the commercial lighting industry and have become the standard for offices and general applications. Since they are

22% more efficient than T12s, it is generally always cost-effective to retrofit or replace fixtures that use T12 lamps in existing applications even before the existing T12 lamps burn out. The rare exception might be individual fixtures that are rarely used. However, it will be more efficient to replace or upgrade these at the same time to avoid costly individual replacements at a later date. T8 lamps use the same socket as T12, but not the same ballast. There is a wide range of T8 design options and good color rendition. The most commonly used T8 lamp is 4-feet-long and 32-watts (F32T8).

High performance or premium T8 lamps – High performance T8s are marketed under the tradenames Ultra (GE), Advantage (Philips), or Super T8 (Sylvania). These T8 lamps provide higher efficacy, higher maintained lumens, and are available in extended life versions with a 20% increase in lamp life. The improved performance is achieved in different ways by different products. Some products have reduced wattages (28 to 30 watts) while achieving the same lumen output as a standard T8. Others have increased lumen output (3,100 lumens) without increasing the wattage. The increased lumen output results in a brighter lamp and potentially more glare. This can be prevented by using the lower wattage version, or by coupling a 3,100 lumen lamp with a reduced output ballast (.77 BF). Premium T8s have a higher initial cost, but the increased energy efficiency and life make them the recommended light source for most commercial fluorescent installations including federal projects.

T5 lamps – Linear fluorescent lamps with a diameter of 5/8 of an inch. These cannot replace T8 lamps because they have different characteristics and different lengths (metric), socket configurations and ballasts. T5s are smaller lamps than T8s, but have similar efficacy (lumens per watts). Their smaller diameter allows for shallower fixtures and greater reflector control, but also increases the brightness, limiting their use to heavily shielded or indirect fixtures.

T5HO (*high output*) – T5 lamps with approximately the same maintained lumens as two standard T8 lamps but less efficient, with about 7% to 10% fewer lumens per watt. This development

allows the designer to potentially reduce the number of fixtures, lamps, and ballasts in an application, making it less expensive to maintain. However, the intense brightness of T5HOs limits their use to primarily indirect luminaires to avoid glare. Also, using one-lamp rather than two-lamp luminaires eliminates the potential for two-level switching. Analysis is required to demonstrate the benefits of using T5HO lamps to offset their lower efficacy and higher cost.

Compact fluorescent lamps (CFLs) –

Fluorescent lamps with a single base and bent-tube construction. Originally designed for the retrofitting of standard incandescents, the first CFLs had a screw-type base. While screw base lamps are still available, commercial applications typically use lamps

CFL advantages and disadvantages

Advantages:

- Good substitution for most incandescent lamps
- High efficacy 56 to 71 lumens per watt.
- Flexible source with a wide range of sizes and shapes, and good color rendering (82 CRI)
- Long lamp life: 10,000 to 12,000 hours
- Cool operation
- Diffused surface brightness

Disadvantages:

- Require a compatible ballast
- Dimming requires a more expensive ballast
- Temperatures can affect start-up, lumen output, and lamp life
- Not a point source if narrow beam distribution is required

with a 4-pin base. This prevents the future replacement of a screw-based CFL with a much less efficient incandescent lamp. CFL lamps have a wide range of sizes and attractive colors, and can be used in most FEMP applications that formerly used incandescent.

High Intensity Discharge (HID) lamps also use a gas-filled tube to generate light, but use an arc current and vaporized metals at relatively high temperatures and pressures. There are two main types in current use – metal halide (MH) and high-pressure sodium (HPS) – and their characteristics are determined by the gas. MH provides a white light with a CRI of 65-95, while HPS

HID lamp advantages, disadvantages, and appropriate uses

Advantages:

- High lumen output up to 1,000 wattage lamps available
- Medium to high efficacy MH: 51 to 85 lumens per watt; HPS: 60 to 115 lumens per watt
- Long lamp life MH: 10,000 to 20,000 hours; HPS: 10,000 to 24,000+ hours
- Insensitivity to ambient temperatures
- 50% and 100% bi-level switching ballasts available

Disadvantages:

- Lamps have a warm-up period before reaching full output/color
- If power is interrupted, lamps must cool off before restriking (hence unreliable dimming and unacceptability for emergency lighting). Some HPS lamps are available with instant restrike.
- Inappropriate for many control strategies like daylight harvesting, occupancy sensors, or frequent switching.

Appropriate Uses:

- Metal halide lamps come in a wide range of shapes and colors, and are suitable for most lighting applications
 where continuous operation is required. "Ceramic" metal halide technology provides colors in the 80 to
 98 CRI range with a warm color temperature of 3000K.
- Metal halide PAR and small tubular lamps provide an energy-efficient substitute for many types incandescent/ halogen reflector and tubular lamps
- High-pressure sodium (HPS) lamps are most often used in roadway and other outdoor applications. Lamp life
 is very long (30,000+ hours), but the CRI is low (about 22 to 30). Improved whiter HPS lamps are available
 with a CRI of 65, but as color improves, efficacy and life are significantly reduced.

emits a yellowish light with a CRI of 22 to 65. Historically, HID lamps were relegated to outdoor or service areas, but advances in color, configurations, and efficacy have made them more attractive for commercial and interior use.

Electrodeless lamps (also called induction lamps) most commonly use radio frequency to ionize mercury vapor at low-pressures, resulting in exciting the phosphors inside the envelope to create a glow, similar to fluorescent technology. The three major lamp manufacturers each produce a distinctive lamp design, the small reflector "Genura" lamp by GE, the globe-shaped "QL" by Philips, and the high-output donut-shaped "Icetron" by Sylvania. Electrodeless lamps are installed in the post-lanterns at Union Square Park in Manhattan.

Electrodeless lamp advantages, disadvantages, and appropriate uses

Advantages:

- Very long life (100,000 hours) due to lack of electrodes to deteriorate
- Good maintained lumen output over life
- Low to high light output available (1,100 to 12,000 lumens per lamp)
- Medium to high efficacy (40 to 60 lumens/watt)

Disadvantages:

- Not interchangeable with other lamps and ballasts. No competition.
- Only one manufacturer per lamp style (donut, reflector, globe)
- Limited to diffuse distribution
- Limited wattages and lumen output for each style
- Requires magnetic core, which has shorter life than the lamp

Appropriate Uses:

- Locations where maintenance is expensive or difficult
- Replacement reflector lamp for incandescent floodlight in high ceilings
- Locations where high lumen output and diffuse distribution is desirable (indirect kiosks in high ceilings)
- More information is available from the manufacturers and the Advanced Lighting Guidelines.

Incandescent/Halogen lamps generate their light by heating a tungsten filament until it glows, in the presence of an inert gas such as argon or nitrogen. A halogen lamp is a form of incandescent lamp that introduces traces of halogen gas and a quartz envelope to burn hotter and prolong the filament life. Consequently, they are whiter (3000K rather than 2700K) and are slightly more energy efficient than standard incandescents. Halogen should be used in lieu of standard incandescent, and low voltage should be considered for the tighter, more focused beam. However, whenever possible, the use of more efficient CFL or ceramic metal halide sources should be explored. Since incandescent/halogen lamp types are very inefficient (roughly five times less efficient than fluorescent), they should be used sparingly, or the project will not meet the energy code. See the suggested uses below.

Light Emitting Diodes (LEDs) are made of an advanced semi-conductor material that emits visible light when current passes through it. Different conductor materials are used, each emitting a distinctive wavelength of light. LEDs come in red, amber, blue, green, and a cool white, and have limited applications at this time.

Incandescent/Halogen lamp advantages, disadvantages, and appropriate uses

Advantages:

- Excellent color rendering and a warm appearance
- Can be focused for use in reflector lamps
- Compact size
- No ballast required
- Easily dimmed
- Minimal ultra-violet emissions for conservation of light sensitive materials

Disadvantages:

- Low efficacy Halogen is the best at 13 to 21 lumens per watt.
- Shorter lamp life than alternatives Halogen is the best at 3,000 to 6,000 hours
- Lamp can get very hot
- Low voltage transformers may be required for halogen lights
- Point source is glary if not shielded.

Appropriate Uses:

- Historic settings when CFL lamps cannot be used
- Applications in which color rendering is extremely important (art work, limited retail)
- Displays where the narrowest beam control is necessary

LED Lamp advantages, disadvantages, and appropriate uses

Advantages:

- Impact resistant
- Operate best at cooler temperatures so good for outdoor applications
- Small size
- Low to medium efficacy, depending on the color. Red is highest, followed by amber, green, white, and blue.
 A more efficient white light can be created by combining red, green, and blue LEDs. White LEDs are currently about 30 lumens per watt, but efficacies are expected to increase steadily.
- Monochromatic color for exit signs, signals, and special effects
- Effective for rapid or frequent switching applications

Disadvantages:

- Rapid lumen depreciation: White LEDs may last 12,000 hours or longer, but "useful life" is only 6,000 hours, the point at which point light output has reduced 50%.
- Monochromatic color
- Heat buildup
- Cost
- White LEDs are still bluish and provide low lumens per watt, similar to incandescent. Both conditions are expected to improve rapidly over the next 15 years.

Appropriate Uses:

- Currently used primarily in exit signage, traffic signaling, and certain special effects
- Excellent for projecting words or an image as in walk/don't walk signs or exit signs. FEMP recommends them for these uses.
- LED sources may have the greatest potential for technical improvements and new applications in the next 15 years.

9.11.2.2 Ballasts, Transformers, and Power Packs

Electrical devices are needed to provide the necessary high starting voltage, and then limit and regulate the current to the lamp during operations. All gas discharge lamps, like fluorescent and high intensity discharge (HID), require ballasts (incandescent lamps do not). Ballasts typically are designed to efficiently operate a specific lamp type, so lamps and ballasts are chosen together. The final ballast product selection is usually done by the fixture manufacturer, in response to the lighting designer's minimum performance requirements. In specifying or evaluating ballasts, the basic performance criteria to consider include the following:

- Ballast Factor (BF) –
 proportion of potential
 light output. Not a
 measure of
 efficiency.
- Lamp-Ballast System
 Efficacy Mean
 lumens of lamps
 divided by input wattage of ballast. Best
 measure to evaluate system efficiency.
- Power Factor (PF) –
 Not lower than 0.90
- Total Harmonic Distortion (THD) Not higher than 20%



Figure 9.11.1. Fluorescent lamp/ballast efficacy

- Minimum Starting Temperature appropriate for application
- Voltage requirements matching supply voltage, or multi-voltage taps
- Maximum distance between lamp and remotely located ballast check with manufacturer.

9.11.2.3 Luminaire Housing

A luminaire is the entire lighting assembly that includes a light source, a ballast to control the power, and a housing with components necessary for light distribution and shielding of the source.

Aspects of the luminaire housing related to building operations and maintenance include:

- Sturdy construction, not easily moved or damaged or vandalized
- Materials that maintain their initial characteristics, like reflectance or shininess (specularity) or cleanliness.
- Features that make installation, wiring, and leveling easy.
- Features that make maintenance easy, like hinges, fasteners, self-tapping screws, safety chains, no rough edges, easy access to ballasts and wiring, ease of cleaning.

Luminaires are most often classified by the light source and the distribution of the light. Once the most appropriate distribution is selected for a particular application, then luminaires within that classification can be compared for glare control, efficiency, and overall performance.

- Direct 90% to 100% downlight
- Semi-direct 60% to 90% downlight, 10% to 40% uplight
- General diffuse 40% to 60% up and downlight
- Semi-indirect 60% to 90% uplight, 10% to 40% downlight
- Indirect 90% to 100% uplight

Cleaning classification – The recommended cleaning schedules for luminaires depends on the openness of the fixture design, the distribution characteristics mentioned above, and the dirtiness of the environment.

These conditions are components of the "luminaire dirt depreciation" (LDD) factor (see recoverable light losses, Section 9.11.4.1). The capacity for a luminaire to retain dirt or dust falls into two categories:

- Open/Unventilated Luminaires that are open on the bottom, with or without louvers or baffles, and a housing that has no top ventilation apertures that would provide a steady path for air to move through the fixture.
- All Other Luminaires that do not meet the description above, such as bare lamps, strip fixtures, enclosed or lensed fixtures, or any fixtures with top openings for ventilation.

9.11.2.4 Lighting Control Devices

There is seldom just one way to accomplish the desired control of lighting, and a variety of equipment is available to the lighting designer. (Minimum lighting controls are required by code – see Energy Codes, Section 9.11.4.4.) A comprehensive strategy uses several of these control devices in concert, responding to project-specific usage patterns:

- Manual controls
 - Switches and switching patterns
 - Manual dimmers
- Automatic controls
 - Occupancy sensors
 - Daylight sensors
 - Pre-set controls
 - Time controls
 - Centralized control management

Manual Controls – Manual controls allow the users to select the lighting levels best suited to their immediate needs. Task lights located in workstations should have manual controls. Spaces with variable activities, such as training rooms, multi-purpose rooms, or conference centers, generally require manual controls to enable the users to tailor the light for each different activity. Allowing the users to select a "pre-set" lighting scene will generally reduce consumption. With manual controls,

occupancy satisfaction is achieved, but the reduction in energy use is unpredictable since it requires individuals to turn off their lights. For effective use, the controls need to be intuitive and labeled. Note that even with manual controls, the energy standard still requires automatic shutoff when spaces are not occupied.

Switches. Switching strategies can be used in combinations to offer multiple levels of illumination, and multiple mixes of available light sources. In its simplest application, open work areas can have several zones of luminaires, so partially occupied rooms do not need to burn all the lights. Three-way switches are typically used in multi-entry and multi-zoned rooms to facilitate people moving from zone to zone. Automatic switches, (or Sentry-type switches that reset to the off position) are appropriate for use with manual-on/automatic-off occupancy sensors. Another strategy is bi-level switching – two (or more) light levels within a space can be attained with multi-lamp luminaires, factory pre-wired for easy connection to separate switches, which allows one lamp in each fixture to be turned off, effectively "dimming" the lights. When several light sources – e.g., overhead luminaries, wall washers, down lights – are present, each type should be switched separately.

Manual dimmers. Manual dimming is most useful to respond to specific user needs – dimming the conference room lights for AV presentations, raising the light level for the cleaning crew, changing the mood in a cultural space. Manual dimmers can be wall box sliders or hand-held remote controls. Both incandescent and fluorescent light sources are dimmable, and both use less energy when dimmed, although the energy saved is not always proportional to the decrease in light. Incandescent lamps can be readily dimmed, but fluorescents need specialized electronic dimming ballasts.

Automatic Controls – Automatic controls provide benefits in user comfort and energy conservation. Automatic controls can deliver reliable energy savings without occupant participation, and when well designed, without their notice. In addition, they can make adjustments to light levels throughout the day, or in response to specific needs. For safety reasons, lighting controls should be specified to default to full-on when control equipment fails. Recommissioning is valuable for determining that all the controls operate and save energy as intended.

Automatic controls advantages, disadvantages, and appropriate uses

Advantages:

- Sufficient energy conservation possible
- Energy savings are more predictable
- Allows a comprehensive daylighting strategy
- Subtle changes in light levels can be accomplished without occupant participation
- Flexible for accommodating changes in use or occupancy over the moderate/long-term

Disadvantages:

- Controls must be very reliable and predictable for user acceptance
- May require expertise and/or training of maintenance personnel
- Commissioning is required and adjustments may be necessary when layouts change
- Moderate to high initial cost (\$0.20/ft² for scheduling, higher for daylighting)

Appropriate Uses:

- Dimming of electric lighting to support a daylighting strategy
- Rooms with periods of no occupancy during the day (for occupancy sensors) or have regular operating hours (time clocks)
- Support spaces and outdoor areas with predictable needs

Occupancy Sensors. Occupancy sensors turn off the lights when they detect that no occupants are present. The occupancy sensor includes a motion sensor, a control unit, and a relay for switching the lights. The sensor and control unit are connected to the luminaire by low voltage wiring, with a transformer stepping down the current. There are three commonly used types of occupancy sensors, defined by how they detect motion: ultrasonic, passive infrared and dual-technology.

- Ultrasonic sensors (US) utilize a quartz crystal that emits high frequency ultrasonic waves throughout the room. Shifts to the frequency of the wave (called Doppler effect) indicate that there is motion/occupancy in the space. US cover the area in a continuous manner, and there are no blind spots in the coverage, e.g., a desk behind a partition. While this makes them effective at detecting occupancy, it also makes them more vulnerable to "false-on" readings caused by traffic in adjacent corridors and air currents. Therefore, they can be most effectively used in combination with manual-on switches (see below), particularly in daylighted spaces. Manual-on prevents false-ons and saves energy by avoiding unnecessary automatic activation when daylight or spill-light is sufficient for the activity.
- Passive infrared sensors (PIR) respond to the infrared heat energy of occupants, detecting motion at the "human" wavelength. They operate on a line-of-sight basis and do not detect occupants behind partitions or around corners. They also are less likely to detect motion as the distance increases. Therefore, they are useful when a room is small or it is desirable to control only a portion of a space. PIR are more susceptible to false-off readings than false-ons, so tend to be more annoying to occupants than ultrasonic sensors.

Figure 9.11.2. Wall-box occupancy sensor uses hidden internal dip-switches to set manual-on, auto-off.

Dual-technology sensors combine two technologies to prevent both false-offs and false-ons. The
most common one uses both ultrasonic and passive infrared sensing to detect occupancy. The
sensor usually requires that both US and PIR sense occupancy before turning on. The lights will
remain on as long as either technology detects someone. High quality occupancy sensors use the
dual technology, since it is more reliable than each of the separate technologies used independently. Dual-technology sensors cost more than sensors using either US or PIR alone.

Other occupancy sensor features to consider include:

- Mounting location Ceiling, high-wall or corner, or wall box. Room size and layout are the
 major determinants. Ceiling-mounted sensors are the most versatile because their view is less
 obstructed. Wall box sensors take the place of the room's wall switch, and they are economical
 and easy to retrofit. Wall box sensors are appropriate for small, unobstructed spaces.
- On-Off settings Occupancy sensors can automatically turn on (auto-on) and then automatically turn off (auto-off). Or, they can require the user to turn them on (manual-on) and then automatically turn off. Manual-on sensors save more energy because the lights do not turn on when the user does not need them. Auto-on sensors are useful in applications where the users are not familiar with the layout and switch locations, or where finding a switch would be inconvenient.
- Sensitivity Most sensors can be adjusted for the desired degree of activity that will trigger a sensor response. The time-delay (i.e., the time elapsed between the moment a sensor stops sensing an occupant and the time it turns off) can also be selected. The setting can range from 30 seconds to

30 minutes, and the choice becomes a balance between energy conservation, user tolerance, and lamp life. We suggest no less than 15 minutes if controlling instant start ballasts.

• Multiple level control – Occupancy sensors are effective for multiple level switching in spaces where full off is not acceptable, but occupancy is not continuous. By using a two- or three-level ballast, or multi-lamp fixtures with lamps wired separately, the lowest level may be allowed to operate at most hours, but when occupancy is sensed, the light level increases. This is a useful energy saving strategy in areas where safety or security requires some light at all times, such as certain enclosed stairs, security corridors, restrooms, etc. Of the two strategies, multi-level ballasts have the advantage of keeping the lamp warm, reducing early burn-outs caused by frequent switching.

Daylight Controls. Daylight controls are photoelectric devices that turn off or dim the lights in response to the natural illumination available. Depending on the availability of daylight, the hours of operation and the space function, photoelectrically-controlled lighting can save 10% to 60% of a building's lighting energy. This can translate into even more savings since daylight availability coincides with the hours of the day when peak demand charges apply.

Smooth and continuous dimming is the preferred strategy for automated daylighting controls in offices or other work areas, since it is not distracting to the workers. The photosensor adjusts the light level based on the amount of natural light sensed by sending a signal to the dimming ballast. The less expensive dimming ballasts with minimum settings of 20% of full output are appropriate for daylight dimming (EPRI 1997). The two strategies, "closed-loop" and "open loop," are based on photo-sensor locations, and the correct sensor location is essential. In a "closed loop" system, the sensor is located above a horizontal surface to detect the light reflecting off that surface from both electric and daylight sources. Since the sensor is reading reflected light, the reflective characteristics of the surface should remain constant. Consequently, sensors are located over a circulation area, rather than a workstation where the reflectivity of the worker's clothes or desktop contents might change. In an "open-loop" system, the sensor is located near the window in such a way to only detect daylight. In both systems, the sensor must not pick up the direct illumination from the electric lights. Sensors can control more than one dimming ballast but the luminaires being controlled must all have a similar orientation to the natural light. For example, trees in front of several windows define a separate lighting "zone." Time-delay settings are used to slow down the response to rapid changes in natural lighting conditions, providing more steady lighting.

Switching the lights off when sufficient natural lighting is present is a less expensive strategy, but not as acceptable to the occupants. This approach is most commonly found in outdoor applications – controlling parking lot lighting for example. In buildings, a stepped approach to daylight switching is sometimes employed, in which only some lamps are switched off in multilamp luminaires. Alternately, daylight switching is used in rooms where continuous occupancy is not common, such as corridors, cafeterias, atria, or copy rooms.

Pre-set Controls. Switching, dimming, or a combination of the two functions can be automatically preprogrammed so that the user can select an appropriate lighting environment ("scene") at the touch of a button. Each scene uses a different combination of the luminaires in the room (sometimes dimmed) to provide the most appropriate light for one of several planned activities in that

Figure 9.11.3. Photosensor and fluorescent dimming ballast for continuous daylight dimming.

room. A "pre-set controller" and wiring plan organizes this. For example, the occupant of a conference room could select one pre-set scene from a five-button "scene selector" wall-mounted in the room, labeled "Conference," "Presentation," "Slide Viewing," "Cleaning," and "Off." This allows multiple lighting systems to be installed to meet the varying needs of separate activities, but prevents them from all being used at full intensity for every activity. A pre-set scene should be included for the cleaning crew, which should use the most energy-efficient lights that will allow them to do their work.

Time Controls. Time clocks are devices that can be programmed to turn lights on or off at designated times. These are a useful alternative to photoelectric sensors in applications with very predictable usage, such as in parking lots. Simple timers are another option, turning the lights on for a specified period of time, although there are limited applications where this is appropriate, e.g., library stacks. A time-controlled "sweep" strategy is sometimes effective. After normal hours of occupancy, most of the lighting is turned off (swept off), but if any occupants remain, they can override the command in just their space. Override controls can be wall switches located within the space or be activated by telephone or computer. These systems typically flash the lights prior to turnoff, to give any remaining occupants ample time to take action. There is usually more than one sweep operation scheduled after hours until all lights are turned off.

Centralized Control Management. Automated Building Management Systems (BMS) are becoming more common in medium- and large-sized facilities to control HVAC, electrical, water, and fire systems. Incorporating lighting controls is a natural step in efficient management, and centralized lighting control systems are available that can interface with building maintenance systems while providing data on lighting operation. However, in some cases, centralized systems are not appropriate for some functions, such as managing the dimming controls. The technological advance that may change this is DALI (digital addressable lighting interface), a communication protocol that allows an entire lighting system to be managed with computer software. This is promising for situations that require sophisticated control and flexibility for lighting reconfiguration. The DALI system is being designed based on an international standard so that various system components are compatible.

9.11.3 Safety Issues

In dealing with lighting equipment, the greatest concern is electrical shock, followed by injury from falls from high mounting locations, ladders and lifts, and handling of hazardous waste.

9.11.3.1 Electrical and Equipment Safety

- A. All electrical equipment should be properly grounded, including luminaires, ballasts, starters, capacitors and controls, and be in accordance with the National Electric Code® (NEC®).
- B. Although maintenance personnel may handle routine maintenance such as changing lamps or cleaning luminaires, all trouble-shooting and repair must be handled by licensed electricians. All personnel must be properly trained and equipped.
- C. All maintenance personnel shall be provided with and instructed in the use of proper tools and equipment such as protective hand tools, fall protection such as safety belts or harnesses, hard hats, goggles, gloves, and testing tools.

Figure 9.11.4. Repair and rewiring must be done by a licensed electrician.

- D. All maintenance of lighting equipment must follow the lockout/tagout standard in OSHA 1910.147 *The Control of Hazardous Energy*. This standard applies to the control of energy during servicing and/or maintenance of machines and equipment. Employers must utilize procedures "for affixing appropriate lockout devices or tagout devices to energy isolating devices, and to otherwise disable machines or equipment to prevent unexpected energization, start-up or release of stored energy. The employer must be able to demonstrate that the tag-out device provides an equivalent level of safety to the lock-out device in that particular situation." Consult the OSHA website for the U.S. Department of Labor at www.osha.gov.
- E. Special precautions should be taken near high voltages and lighting components such as HID capacitors that may retain their electric change after the system has been de-energized. See OHSA.
- F. All forms of lifts, scaffolds, and ladders must meet OSHA standards for construction and use. Portable scaffolds, telescoping scaffolds, and personnel lifts are typically safer than ladders, by providing a firmer footing and space for tools, replacement items, and cleaning materials. Ladders used for lighting maintenance should not be made from materials that conduct electricity, such as aluminum. Stilts are sometimes used for maintenance of low ceilings or low-mounted luminaires.

9.11.3.2 Hazardous Materials Handling

- A. Breakage of mercury-containing lamps Mercury vapor is most hazardous when lamps are operable. When a fluorescent or metal halide lamp containing mercury gas is broken, the following safety procedure is recommended. Clear the areas for 10 minutes; turn off AC so that mercury vapor does not spread; flush the area with fresh air: use an N95 respirator mask and goggles and gloves to sweep the particles into a glass jar. Double wrap in a paper bag. Dispose of as hazardous waste. Clean area and clothes. Discard gloves.
- B. Hazardous waste lamps are classified by the U.S. Environmental Protection Agency (EPA) as those failing the EPA Toxicity Characteristic Leaching Procedure (TCLP) for landfills, and include fluorescent, high pressure sodium, metal halide, mercury vapor, and neon lamps (if they contain mercury). The EPA revised their rules about mercury-containing lamps in 2000, allowing the following three options:
 - Mercury-containing lamps must pass the TCLP test
 - Must be treated as hazardous waste in storage, handling, collection, and transportation
 - Must be managed under the universal waste rule (40 CFR 273), i.e., recycled.
- C. The universal waste rule allows for disposal of hazardous lamps in small quantities. However, since the federal government disposes of such high volumes of waste, this practice should not be followed. Recycling costs about \$0.35 to \$1.50 per 4-foot lamp depending on quantity and adjunct services. See www.lamprecycle.org for lamp disposal regulations and lists of recyclers. Hazardous waste landfill costs are about \$0.25 to \$0.50 per 4-foot lamp, not counting storage, collection, and transportation fees costs that are generally more expensive than for recycling. Different states, (e.g., CA, CT, FL, ME, MI, PA, RI, VT) have more stringent regulations and do not even allow low-mercury lamps (i.e., lamps passing the TCLP test) in landfills.
- D. Magnetic ballasts with PCBs in the capacitors can still be found in older installations, even though they were banned from being manufactured or distributed after 1978. All ballasts produced after that date are clearly labeled "No PCBs." PCBs are classified by the EPA as a hazardous waste under the TSCA section of their regulations, which requires disposal of the capacitor in a federally-approved

- incinerator. Ballasts that are not leaking can be recycled. Whether or not the ballast is leaking fluid, the building manager should use a qualified disposal contractor who is aware of all PCB-related hazards.
- E. The building manager and the waste or recycling contractor must keep proper documentation and chain of possession records. Auditing the contractor and reviewing the contractor's closure plan (for transition of materials if the contractor goes out of business) is recommended prior to signing a contract and every few years afterwards.

9.11.4 Energy Efficiency, Savings, and Cost

Ways to maintain performance and improve system efficiency through planned maintenance, response to complaints, retrofit, and redesign.

9.11.4.1 Planned versus Reactive Maintenance

Lighting systems are intentionally overdesigned to account for losses in light output that will occur over time. Thus, the initial light levels are higher than needed, in order to ensure that the maintained light levels do not fall below design recommendations over time. The determination of overdesign depends on light loss factors (LLF) that include assumptions for cleaning and relamping fixtures at regular intervals, that is, a program of planned lighting maintenance.

 $\frac{\text{Luminaires required} = \underbrace{\text{Lighted area } x \text{ desired maintained illuminance}}_{\text{Initial lamp lumens } x \text{ luminaire utilization efficiency } x \text{ LLF}}$

Planned maintenance can improve the LLF, reducing the number of luminaires required. Reactive maintenance, i.e., replacing lamps or ballasts when they fail, will not keep illumination at the desired levels. Following a planned maintenance program is essential to the success of any lighting system.

A planned maintenance program can reduce the degree of overdesign, resulting in significant reductions in first cost of equipment and in energy consumption. It can also improve safety, security, and the visual appearance of the spaces.

A proactive, planned maintenance program includes the following:

- Cleaning of lamps, luminaries, and room surfaces at regular intervals
- Group relamping on a scheduled basis of all luminaires in an area, with spot relamping in between. One cleaning can be performed in conjunction with relamping
- Inspection and repair of lighting equipment at regular intervals
- Inspection and re-calibration of lighting controls at regular intervals
- Re-evaluation of lighting system and potential upgrades. An upgrade may replace a group relamping cycle.

Recoverable light loss factors (LLF) are those that can be fully or partially returned to initial performance by proper maintenance. They include the following:

• *Lamp Burnouts (LBO)*. "Rated Lamp Life" is provided by the manufacturer and represents the point in time when 50% of a group of lamps have burned out under controlled testing with lamps switched on 12-hour intervals. These are useful in determining exactly when group relamping interval is most economical (typically at about 70% to 80% of rated lamp life for fluorescent).

Extended life fluorescent lamps are available with 20% to 50% longer rated life. Frequent switching of fluorescent lamps (more than five on-off cycles per day) may greatly reduce lamp life, unless the cathodes are protected by a "programmed -start" ballast.

- Lamp Lumen Depreciation (LLD). Lamp lumen depreciation presents the decrease in light output of a lamp over time. Lamp catalogues provide both "initial lumens" and "mean lumens," the former measured after 100 hours, and the latter occurring at 40% of the rated lamp life. New, high performance T8 lamps retain more of their lumen output than other sources (about 92%), while HPS retains only about 70% and metal halide about 65%. Mercury Vapor and LEDs have the greatest fall off in light output, so although they have longer rated lives, it makes more sense to consider replacing them before the end of their "useful" life.
- Luminaire Dirt Depreciation (LDD). Dirt and dust that settles on lamps and luminaire not only reduce the output but can also change the distribution of a luminaire (Levin 2002). The LDD factor used in lighting calculations depends on
 - The type of luminaire (open but unventilated, and all others)
 - The cleanliness of the environment
 - The anticipated cleaning schedule

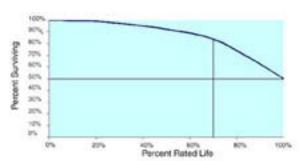


Figure 9.11.5. Fluorescent lamp mortality curve.

- See the IESNA RP-36-03 cleaning curves and equations to determine the best cleaning schedule. In a clean environment, some enclosed and ventilated luminaires can be cleaned every 24 to 30 months, resulting in less than 10% light loss (i.e., a LDD of 0.9). An open luminaire without ventilation would have to be cleaned every 12 months to keep the light loss at the same level. In a "dirty" environment, luminaires require cleaning every 6 months to a year to keep light losses above 20% (i.e., a LDD of 0.8).
- Room Surface Dirt Depreciation (RSDD). The reflective characteristics of the interior finishes can have a large impact on the efficiency of the lighting system and the quality and comfort of the light provided. Light levels can be better maintained by regular cleaning of the work surfaces. In existing facilities, light output, comfort, and lighting quality can be improved by repainting the walls a lighter color.

Non-recoverable light loss factors include:

- Ballast losses (the difference between rated lamp wattage and the actual input wattage)
- Supply voltage variations
- Ambient temperature of luminaire and surrounds
- Luminaire surface deterioration Permanent deterioration of luminaire surfaces can be minimized by the wise specification of finishes for luminaire interiors and reflectors.

9.11.4.2 Response to Complaints

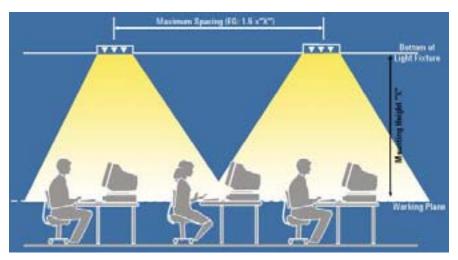
Perhaps the greatest cause of energy waste is lighting controls that do not reduce energy consumption because they have failed or are improperly calibrated, or lighting controls that have been overridden or disabled rather than calibrated correctly. For example, an employee complains that the

daylight dimming is too abrupt, or results in light levels that are too low. Rather than investigating the problem and fixing it, or providing the employee with an additional task light, either the staff cuts the control wires so the lights will not dim, or sets the sensor settings so high that the lights will not dim, or the employee puts tape over the light sensor so that the lights will not dim. While it is possible that a control system has been poorly designed and can never be calibrated well enough to satisfy the occupants, every effort should be made to work with the control manufacturer and the system designer to achieve the proper balance between energy savings and user acceptance. The easy way out of disabling the offending system can have a vast impact on the energy savings, and may even impact on cooling loads that were designed on the basis of reduced lighting consumption.

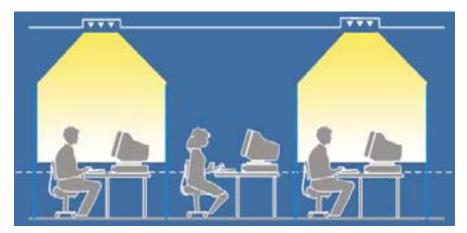
9.11.4.3 Retrofit versus Redesign

Retrofit is typically described as replacement of components (lamps, ballasts, reflectors, lenses, even luminaires) in the same housing or location as the original lighting equipment. Redesign is typically described as new luminaires in some new locations. On the surface, retrofit may appear to be the cheapest and easiest path, but in fact is not always the most cost-effective strategy. Retrofit may not be the best solution if:

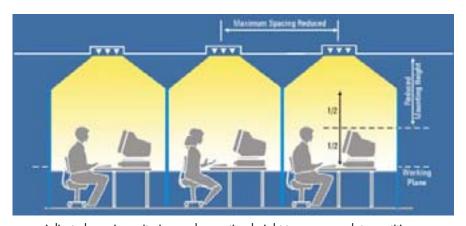
- Existing lighting quality is poor
- Existing light levels are too low or contrast between bright and dark areas is too high
- Existing lighting does not light walls or work partitions
- Existing luminaire locations produce illumination that is not uniform
- Existing luminaire spacing is too wide and/or partial height partitions obstruct the light.
- Luminaire spacing or locations are inappropriate for current or proposed use or furniture layouts
- Existing room surfaces or furniture are dark in color
- Retrofit options will narrow the distribution of light or lessen the light levels on vertical surfaces.


If "retrofit" still seems like the best option, consult the IESNA Guidelines for Upgrading Lighting in Commercial and Institutional Spaces (LEM-3-04), available in the fall of 2004 at www.iesna.org.

Otherwise, consider redesigning the lighting layouts and reconsidering the types of luminaires if any of the existing conditions make the space unsuitable for retrofit. The trend of improvements in lighting technologies can create cost-effective opportunities for upgrading the lighting in federal facilities, even if they have been upgraded in the last 5 to 10 years. For example, high performance T8 lamps and ballasts could save 10% to 15% over standard T8s installed only 8 years ago.


- At the very least, higher performance lamps should be considered for the next scheduled group relamping.
- Upgrade lamps (and ballasts) instead of group relamping

When considering a retrofit or redesign, it is important to keep in mind the importance of the quality of the lighting in a space. Lighting quality is just as important, and oftentimes more so than quantity of illumination. The IESNA Handbook, Ninth Edition, Chapter 10, contains lighting design guides for a wide range of space functions. These outline the most important qualitative needs, as well as the recommended light levels for each function.


• Uniformity – There should not be a wide range of differences between the highest and lowest brightness in the space. The existence of partial height furniture partitions may significantly reduce uniformity, requiring a closer spacing or wider distribution of luminaires. Avoid harsh shadows or patterns (see figures below).

Uniform light distribution following maximum spacing criterion.

Spacing criterion does not account for partial height partitions.

Adjusted spacing criterion and mounting height to accommodate partitions.

Figure 9.11.6. Lighting uniformity and fixture spacing criteria.

- Spacing Criterion Manufacturers provide the maximum spacing between luminaires that will maintain acceptable uniformity. However, this "spacing criterion" assumes that a room is unobstructed. If a room has partial height furniture partitions, tall files, or other obstructions, the spacing criterion should be reduced by a factor of 0.75 to 0.85.
- Lighting Walls and Ceilings The perception of occupants that the lighting is too bright, comfortable, or too dim is based more on the brightness of the room surfaces and vertical partitions than that of the task or desktop. A lighting system should be designed to distribute light to the walls and ceilings as well as the task. A light colored room can increase light levels as much as 20% over a dark colored room. Cleaning the wall surfaces improves efficiency, especially in a "dirty" environment, but repainting a wall with a lighter color will show much greater improvement.
- Glare Excessive contrasts in light cause glare. It most often occurs when a bright light source (including windows) interfere with the viewing of less bright objects. Existing conditions of glare can be mitigated, or glare prevented in retrofits, by some of the following recommendations:
 - Shield the lamp from view with baffles, louvers, lenses, or diffusing overlays. Use only semi-specular or white painted louvers and reflectors.
 - Increase the reflectances of room surfaces by using lighter colored paints and fabrics in a matte or eggshell finish.
 - Use low output (high-efficiency) lamps in the field of view. T5HO lamps are very bright and best used in indirect applications.
 - Decrease the contrast between fixtures and ceilings by adding uplight or selecting luminaires with an uplight component.
- Color For almost any task, color discrimination aids visibility. Light sources are typically described by their "correlated color temperature (CCT)" and their color rendering index (CRI). For most workplaces, use fluorescent lamps in the 80 to 85 CRI range, and metal halide lamps at 80 and higher. For most workspaces, CCT between 3500 and 4100 are acceptable. For reference, 3000 Kelvin CCT is warm, 3500 K is neutral, and 4100 K and higher become increasingly cool in appearance. Sunlight is in the 4000 to 6000K range, and daylight is in the 5000 to 10,000 K range.

9.11.4.4 Energy Codes

The current energy code applicable to all federal buildings is 10 CFR 434 ("Energy Code for New Federal Commercial and Multi-Family High Rise Residential Buildings"). This code is similar in requirements to the ANSI/ASHRAE/IESNA 90.1-2001 standard for commercial buildings (ANSI/ASHRAE/IESNA 2001). It is expected to be upgraded to reference the 2004 standard, which has limits on connected load up to 30% more stringent. This will have a big impact on major renovations in federal facilities. The lighting portion of the energy code has three components – determination of a whole project interior lighting power allowance, determination of an exterior power allowance, and mandatory requirements for lighting controls and exterior lamp efficiencies.

9.11.5 Maintenance Procedures

9.11.5.1 Commissioning

"Commissioning" is defined as the entire process of quality assurance of a lighting system that begins with proper design and specifications, and concludes with calibration, fine tuning, aiming, documentation, monitoring, and verification and that the system operates and saves energy as intended, and is acceptable to the occupants. Even if a lighting system was carefully commissioned prior to occupancy, certain components of it should be recommissioned at intervals ranging from 2 to 5 years to ensure that it is operating as intended. In addition, as tasks or occupants change within the building, lighting controls and even some light levels may need adjustment. The specific lighting related recommendations below pertain equally to commissioning or recommissioning – to the initial design, or to any retrofit, upgrade, or redesign of the lighting system.

- A commissioning plan contains the following elements: design intent, design features, calibration levels, methods of verification, documentation requirements, schedules, and checklists.
- Establish schedules for relamping, cleaning, recalibration, and reevaluation of the lighting system.
- Intervals for recommissioning should be based on the type of equipment. See lighting controls below.
- Specify that the ballasts and lighting controls be factory pre-set to the greatest extent possible. This shall not remove the responsibility from the contractor for field calibration if it is needed. Specify calibration levels to the extent they can be known prior to installation.
- Aiming Some lighting equipment is sensitive to orientation, such as spotlight, wall washers, and occupancy sensors. A "pre-aiming diagram" can be specified or requested prior to installation, so that the contractor can make reasonable adjustments to the equipment during the initial installation.
- Calibration If calibration settings were not specified initially, the facility manager should contact the manufacturer of control equipment directly for assistance.
- Ensure that the commissioning is complete PRIOR to building occupancy. Even a few days of an improperly calibrated control device can turn occupants against the system, resulting in huge energy waste.

9.11.5.2 Common Causes of Poor Performance

Some maintenance items such as swirling lamps or inoperable ballasts are obviously in need of immediate attention and repair (see troubleshooting below).

Of more serious concern are systems that are improperly calibrated or not being maintained on a planned basis resulting in energy waste and/or poor lighting quality. These hidden factors include:

- Dirt accumulation on luminaires or room surfaces that has significantly reduced light output.
- Older lamps that have not burned out but output fewer lumens than the system design assumptions.
- Lamps that are still operating, but have passed their "useful" life, such as metal halides and LEDs.
- Dimming or stepped ballasts that are miswired or failed by defaulting to full output.
- Controls that were never properly calibrated or have fallen out of correct calibration.
- Controls or power packs that have failed and defaulted to continuous on.
- Motion sensors or light sensors that have been disabled by the occupants.

• Controls that have been overridden or disabled (rather than recalibrated) by the building staff in response to complaints.

9.11.5.3 Cleaning

The intent of cleaning lamps, luminaries, and room surfaces is to return them to their original condition recovering any interim losses in light output. It is important to use the proper cleaning compounds and strategies, so that luminaire surfaces are not damaged. Different surfaces require different cleaning compounds. In lieu of manufacturer's instructions, the following represents some guidance.

- Never clean lamps that are operational or still hot.
- Use very mild soaps and cleaners, followed by a clean rinse on most surfaces. Silver films require the mildest 0.5 % solution and a soft damp cloth. Avoid strong alkaline cleaners or abrasives cleaners.
- Glass cleaners may be used on porcelain or glass but the latter requires an additional clear rinse.
- To avoid static charge on plastics, use anti-static cleaning compounds. Do not dry-wipe plastic after a rinse, as this will create an electrostatic charge. Drip-drying creates streaks. Vacuuming is the best method for drying plastics.

9.11.5.4 Lamp and Ballast Troubleshooting

The most common problems associated with lamps and ballasts are:

- Lamps will not light or start erratically or slowly.
- Premature failure or lamp life shorter than expected.
- Deposits, discoloration, dark spots, or streaks of the lamps.
- Blinking, swirling, fluttering, spiraling, unexpected dimming.
- Light output or color degradation sooner that expected.
- Blistering/bulging on the bulb.
- Lamp cycling on and off.
- Ballast noise.

The Illuminating Engineering Society of North America (IESNA) and the interNational Association of Lighting Management Companies (NALMCO) have developed a joint publication titled *Recommended Practice for Planned Indoor Lighting Maintenance* (IESNA/NALMCO RP-36-03). It contains troubleshooting guidance for incandescent, fluorescent, and HID lamps and ballasts. This material is excerpted from troubleshooting guides originally published in *Illuminations*, a NALMCO publication. It is too extensive (13 pages) to be reproduced here. It is available electronically or as a publication at www.iesna.org.

9.11.5.5 Lighting Controls Calibration and Troubleshooting

Calibration

Evaluate lighting controls annually to determine if they are in need of recalibration. Seek advice from manufacturers of controls. Document all settings and dates of recalibration. Seek the optimum

Control Type	<u>Calibration</u> (a)	Notes
Occupancy sensors ceiling-mounted	Time delay: 15 minutes Sensitivity: Medium high	1,2
Wall-box occupancy sensors	Manual-on Auto-off Time delay: 15 minutes Sensitivity: Medium	1,3
Daylight dimming	High illuminance before dimming begins Time delay: 5 minutes Fade rate: 1 minute Sensitivity: See manufacturer	4
Daylight switching	Time delay: 10 minutes Dead band: 15 footcandles Sensitivity: See manufacturer	5
Manual dimming	High end trim at 95% (incandescent only)	6
Automatic dimming	Time delay Fade rate	7
Pre-set dimming	Time delay Fade rate	7
Automatic timers Astronomical time clocks	On and off times, differ for weekends, holidays. Multiple settings depend on space function and occupancy. Daylight savings	8

⁽a) Start with these settings and adjust upward and downward as required. (1) Time delays shorter than 15 minutes are likely to shorten lamp life unless programmed ballasts are installed. (2) Wire ceiling sensors to an automatic or Sentry-type switch for manual on operation. (3) Ensure that occupancy sensors can be set to manual-"on" without over-riding the automatic off functionality. (4) Set the illuminance level 20% to 30% higher than the designed light level for the electric lighting. Thus, if 30 footcandles of electric light is provided, lamps should not start to dim until the daylight and electric light together provide 36 to 39 footcandles on the desktop. (5) Photosensor controlled switching or multi-level switching (sometimes called stepped dimming) is seldom acceptable to occupants in fulltime work environments. Set a wide "dead-band" of at least 15 footcandles to prevent cycling. (6) Slightly reducing the maximum light output of an incandescent lamp extends lamp life. It is not recommended for halogen lamps and is not effective with fluorescent sources. (7) Settings will depend on specific application. Time delays and fade rates are not recommended for pre-sets that are controlled by the occupants (rather than part of an automated program or AV sequence) because if the occupants do not see an immediate response, they often repeatedly turn lights on and off or try other pre-sets. (8) More energy is saved by tailoring the timeclocks more closely to the specific spaces being controlled and by providing more discrete schedules, i.e., one for Saturday and one for Sunday, rather than the same for the weekend.

balance between energy savings and occupant satisfaction. For some strategies, like daylighting controls, calibrations strategies vary widely by manufacturer.

Troubleshooting

Occupancy sensors turn lights "on" when they are not needed. Is the sensor responding to movement in the corridor outside the office, currents from the air diffusers, or it is causing the lights to burn even when daylight is sufficient or preferred. Ultrasonic sensors are more prone to false on, but less prone to false offs, because they are more sensitive to subtle movement like occupants typing or writing.

- Start with adjusting (reducing) the sensitivity setting slightly, reducing the sensors sensitivity to motion, without creating a problem with false offs.
- If the occupants are agreeable, setting the sensor to manual "on" operation (if it is connected to, or integral with, a local switch) is the most energy effect and increases lamp life.
- Mask the sensor so that it does not "see" motion outside the room.

Figure 9.11.7. Ceiling occupancy sensor.

Occupancy sensors turn lights "off" when occupants are still in the space.

- Check to confirm that sensor is not in test mode.
- Increase the sensitivity setting.
- Increase the time delay, but not longer than 30 minutes.
- Consider replacing infra-red sensor with more sensitive ultrasonic sensors.
- Evaluate the number and distribution of the existing sensors and verify if the coverage is sufficient. (Partial height partitions and other vertical obstructions must be taken into consideration.)

Daylighting controls dim the lights too much.

- Verify light levels. If they meet design criteria, the problem may be one of window glare or excessive contrast. Verify that blinds are adequate to control glare. Diffuse shades may be too bright when sun hits them.
- Maximize the "fade rate." Dimming should be smooth and continuous and not perceptible to the occupants. Verify with manufacturer that product has a "continuous" dimming response, not a "threshold" dimming response. The latter is appropriate for spaces like warehouses, but not for offices or spaces with stationary workers.
- Increase time delay to 10 minutes so that lights do not respond to sudden changes like cloud movements near the sun, or people walking under the photosensor.
- Verify that the photocell is properly located over a space that does not change from day to day, like the carpet of aisles between cubicles or an unadorned wall. A photocell over a desktop will respond to the objects on a desk or the occupants clothing, and may dim lights more on days that the occupant wears a white shirt.
- Re-calibrate the photosensor at night and again during hours of daylight. Follow manufacturer's procedure.

Fluorescent lamps flicker when dimming ballasts are at the lowest end of the dimming range.

- Consult the ballast manufacturer and verify wiring is correct.
- Replace the ballasts.
- If the problem is extensive or attributable to the signal sent by the photosensor, increase the lowest setting, but not higher than 30%.

9.11.5.6 Diagnostic Tools

Unlike many HVAC systems and components, lighting equipment and systems tend to be fairly stable once installed and commissioned. Diagnostics is, therefore, generally applicable only periodically or when building needs change. However, when initiating any O&M program or assessment of building energy "health," it is important and can be very profitable to evaluate lighting conditions and equipment.

Generally, the diagnostics of lighting systems involves the evaluation of the basic characteristics of lighting:

- Quality and quantity of light.
- Equipment types and efficiency, condition, and cleanliness.
- Control condition/settings.
- Energy usage.

For some of these characteristics, visual inspection and physical testing is appropriate and requires no special tools. For others some basic tools can be helpful.

Illuminance (light) meter – Illuminance meters are often referred to as a "light meters" which is a generic term that also includes the meters used by photographers (which is not what is needed for building lighting). Illuminance meters come in many styles at a range of costs. Most will do an adequate job of evaluating basic light levels in building spaces. Light levels should be taken at the spaces where the specific tasks are to be performed such as desktops for office work, hallway floors for egress, etc.

Light levels will change over time as lamps age. However, with modern equipment this is a relatively slight effect and is not typically considered a metric used to make changes to equipment or replace lamps. The most important measurement of light levels is an evaluation when systems are initially installed, equipment changes are made, or an O&M program is initiated. Light levels that are higher than necessary to provide appropriate lighting or higher than designed are an opportunity for energy savings as light level and kWh usage are directly related.

The required light levels (illuminance) for building areas will depend on the expected tasks. The widely accepted and referenced quality and illuminance recommendations are developed by the Illuminating Engineering Society of North America (IESNA), and can be found in Chapter 10 of the IESNA Handbook, Ninth Edition. The building tenants or other regulatory organizations may also have specific requirements for the activities to be performed in the building.

Energy/lighting/occupancy loggers – Measurements of individual lighting fixtures or panels can provide specific lighting power information that if tracked over time can help identify controls

savings opportunities. However, the equipment to support these continuous measurements can be expensive to install and maintain. Less costly options that provide similar useful results are individual lighting loggers than can measure lighting on/off schedules for long periods of time with the capability to download the data to any computer for analysis. This kind of data can identify areas where lighting is left on after hours. Similar occupancy based loggers can specifically identify lighting that remains on when spaces are unoccupied. This information can be used to identify overlit spaces as well as good applications for occupancy sensor controls. These loggers are available from a variety of sources. These can be found on the world-wide web or in the report, *Portable Data Loggers Diagnostic Tools for Energy-Efficient Building Operations* (PECI 1999).

Flicker checker – For hard-to-reach areas (high ceilings), it is often difficult to determine the type of lighting installed (electronic, magnetic ballast). There is a simple tool available to help determine the characteristics of ballast type (and therefore often lamp type) installed. A common version of this tool is a "flicker checker" used to determine electronic versus electromagnetic ballasts available from Sylvania (1-800-544-4828). It operates like a simple toy top and will indicate whether the operating ballast above is a 60 Hz type or electronic high frequency type. Typically the 60 Hz type will be operating T12 technology lamps. The high frequency may be operating T12 or T8 technology.

Solar data – When considering the application of daylighting into building spaces, it is important to understand the potential of the building space and the capability of the sun in your area to provide adequate daylight. This involves evaluating the tasks in the space, characterizing the configuration of the space including size and shape of windows or skylights, and assessment of the solar availability in your location. Solar availability data is maintained by the National Oceanographic and Atmospheric Association (NOAA) at www.noaa.gov. Available data includes number of hours of sunshine, number of clear, overcast, and partially cloudy days in a number of cities across the United States based on weather charts. Exterior illumination of sun and daylight can be found for any U.S. latitude through the IESNA daylight availability publication or the ASHRAE handbook. Sun angles can be determined by the Pilkington LOF Sun Angle Calculator, available from www.sbse.org/resources/sac/.

9.11.5.7 **Economics**

Operations and maintenance activities and equipment represent real costs to a facility and must be evaluated like any other proposed action.

Some potential actions can be evaluated using simple methods to provide appropriate cost-effectiveness analysis such as the replacement of incandescent exit signs with reduced-wattage LED signs. The cost of energy saved is easy to calculate based on the wattage difference, 24-hour operation, and local utility rates. The cost of the new exit sign divided by the cost savings provides a simple measure of the time required to pay off the new sign with energy savings (payback period). This is often all that is needed to determine whether the replacement is a good idea.

In other cases, more complicated analysis is required. Large cost items such as more advanced control systems may require longer term investment spanning many years. These types of investment decisions will often require more comprehensive cost analysis that involves more parameters to determine their cost-effectiveness. These often include:

- Installation costs
- Equipment life

- Replacement equipment cost
- Replacement labor
- Interest rate
- Fuel cost
- Fuel escalation rates.

With more advanced resulting analysis metrics such as:

- Return on investment
- Life-cycle cost.

Software tools are available from many sources to perform this type of analysis. The federally supported Building Life Cycle Cost (BLCC5) tool for advanced economic analysis is one such tool that is available from the USDOE at www.eere.energy.gov/femp/information/download_blcc.cfm

9.11.6 Lighting Checklist

Description	Comments	Maintenance Frequency
Visual inspection	Inspect fixtures to identify inoperable or faulty lamps or ballasts. Burned out lamps may damage ballasts if not replaced.	Weekly to monthly
Visual inspection	Inspect fixtures and controls to identify excessive dirt, degrades lenses, inoperable or ineffective controls.	Semi-annually
Clean lamps and fixtures	Lamps and fixture reflective surfaces should be cleaned periodically for maximum efficient delivery of light to the space	6 to 30 months, depending on space and luminaire type
Clean walls and ceilings	Clean surfaces allow maximum distribution of light within the space	1 to 3 years, depending on dirtiness of environment
Replace degraded lenses or louvers	Replace yellowed, stained, or broken lenses or louvers	As identified
Repaint walls and replace ceilings	Lighter colored surfaces will increase light distribution efficiency within the space	As identified or at tenant change
Replace burned out lamps	For larger facilities consider group relamping	As needed or on group schedule
Evaluate lamps and ballasts for potential upgrade	Rapid change in technology may result in significant savings through relamping or simple retrofit.	Every five years or on group relamping schedule
Survey lighting use/illumination levels	Measure light levels compared to tasks needs in typical spaces. Identify areas for reduction or increase in illuminance	Initially and at task/tenant change
Survey for daylighting capability	Identify areas where daylighting controls could be used	One time analysis or at tenant change
Survey for local controls capability	Identify areas where local automatic controls could be used	Initially and at tasks/tenant change

9.11.7 References

10 CFR 434. U.S. Department of Energy. "Energy Code for New Federal Commercial and Multi-Family High Rise Residential Buildings." U.S. Code of Federal Regulations.

40 CFR 273. U.S. Environmental Protection Agency. "Standards for Universal Waste Management." U.S. Code of Federal Regulations.

Advanced Lighting Guidelines, New Buildings Institute, 2003, available from www.nbi.org

ANSI/ASHRAE/IESNA. 2001. Energy Standard for Buildings Except Low-Rise Residential Buildings, ASHRAE/IESNA Standard 90.1-2001 American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE).

Barnhart, J.E., C. DiLouie, and T. Madonia. 1993. Lighten up: A training textbook for apprentice lighting technicians, and Illuminations, A training textbook for senior lighting technicians, NALMCO.

DDC Lighting Handbook. 2004. New York City Department of Design and Construction.

IESNA Guidelines for Upgrading Lighting in Commercial and Institutional Spaces (LEM-3-04), available (in the fall of 2004) at www.iesna.org

Lighting Controls – Patterns for Design, Electric Power Research Institute (EPRI) TR-107230, 1996, available from www.iesna.org

Daylight Design – Smart and Simple, Electric Power Research Institute (EPRI) TR-109720, 1997, available from www.iesna.org

DiLouie, C. 1994. The Lighting Management Handbook, The Fairmont Press.

Levin, R.E., W.E. Bracket, N. Frank, J. Burke. 2002. "Field study of luminaire dirt depreciation." *Journal of the IES* 31(2):26.

Lighting Know-How series for offices, retail, classrooms, warehouses, light industrial and skylighting. DesignLights Consortium. Lighting design guides are available for free download at www.designlights.org

PECI. 1999. Portable Data Loggers Diagnostic Tools for Energy-Efficient Building Operations. Prepared for the U.S. Environmental Protection Agency and U.S. Department of Energy by Portland Energy Conservation, Incorporated, Portland, Oregon.

OSHA – Occupational Safety and Health Agency (www.osha.gov).

Rea, M.S. (ed.). 2000. *IESNA Lighting Handbook* 9th *Edition*. Illuminating Engineering Society of North America.

Recommended Practice for Planned Indoor Lighting Maintenance (IESNA/NALMCO RP-36-03). Joint publication of the Illuminating Engineering Society of North America (IESNA) and the interNational Association of Lighting Management Companies (NALMCO), available from www.iesna.org

USEPA – United States Environmental Protection Agency (www.epa.gov).

Chapter 10 O&M Frontiers

As old a topic as O&M is, there are a number of new technologies and tools targeting the increased efficiency of O&M. As with most new technology introduction, these tools are in various stages of commercialization; for up-to-date information on each tool, contact information is provided in this chapter.

As previously mentioned, we are not able to provide a detailed description of all tools and technologies available. What we do provide are some of the more common tools that are currently, or nearly, commercially available. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

10.1 ACRx Handtool/Honeywell HVAC Service Assistant

Developed by Field Services, Inc., and now marketed by Honeywell as the "HVAC Service Assistant," this tool was designed to provide diagnostics for rooftop HVAC equipment. The tool combines a handheld PDA and multiple pressure/temperature gauges into a single tool that provides expert diagnostic analysis of HVAC equipment to the service technician. This unit automates the detection and diagnosis of problems difficult to identify in compressors, heat exchangers, and expansion valves.

More information about the HVAC Service Assistant

Contact Honeywell at: (800) 345-6770, ext. 7247 www.customer.honeywell.com or www.honeywell.com/building/components.

10.2 Decision Support for O&M (DSOM®)

The DSOM® tool is a condition-based O&M hardware and software program designed to provide facility staff with intuitive actions to implement efficient, life-cycle asset management. DSOM was developed by researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL).

Based on the concept of condition-based management, DSOM focuses on finding the balance between high-production rates, machine stress, and failure. DSOM allows online condition monitoring of equipment and provides early warning signs of degraded performance. DSOM's diagnostic capabilities empower the operations staff to become the first line of maintenance. Moreover, a customized, integrated database, and intuitive access system provide the information all staff need to make informed decisions about how to operate their plant more effectively. Dramatic savings are achievable because DSOM (1) improves process efficiency, (2) cuts maintenance costs, (3) extends equipment life, and (4) reduces energy consumption and associated harmful emissions.

The DSOM technology was developed under government research funding from the U.S. Department of Energy. In 1994, it was installed at the central heating plant of the Marine Corps' Air Ground Combat Center in Twentynine Palms, California. Implementation at Twentynine Palms established proof of principle and verification of value. Recent installations have been completed at Marine Corp Recruiting District Parris Island and a large metropolitan housing project.

More information about DSOM

Contact Dick Meador (509) 372-4098 www.pnl.gov/dsom/.

10.3 ENFORMA® Portable Diagnostic Solutions

ENFORMA HVAC and lighting analyzer was developed by Architectural Energy Corporation (AEC). This hardware/software system relies on AEC's data loggers or an existing energy management system to collect HVAC, controls, and lighting performance data. Once collected, the ENFORMA software enables the analyst to diagnose significant HVAC problems, address comfort issues, and track and verify savings related to equipment retrofits.

More information about ENFORMA

Contact Architectural Energy Corporation at: (303) 444-4149 www.archenergy.com

10.4 Performance and Continuous Commissioning Analysis Tool (PACRAT)

PACRAT is a versatile diagnostic tool developed by Facility Dynamics Engineering to detect problems with HVAC equipment. This tool is designed to provide automated diagnostic capabilities for air handlers, zone distribution systems, chillers, hydronic systems, and whole-building energy use. PACRAT makes use of time-series data collected by existing energy management and control systems (EMCS) or other data-logging equipment. Once collected, the data are processed making use of an extensive automation of expert rules to assess HVAC system performance (Friedman and Piette 2001). PACRAT is designed to calculate and report deviations from baseline operation and estimate the resulting cost of wasted energy.

More information about PACRAT

Contact E. Lon Brightbill (410) 290-0900 www.facilitydynamics.com/

10.5 The Whole-Building Diagnostician (WBD)

The Whole-Building Diagnostician (WBD) is a modular diagnostic software system that provides detection and diagnosis of common problems associated with the operation of HVAC systems and equipment in buildings. The WBD tracks overall building energy use, monitors the performance of air-handling units, and detects problems with outside-air control. This tool uses time-series data as collected by an EMCS or other data-logging equipment. Its development is part of the commercial buildings research program of the U.S. Department of Energy's Office of Building Technology, State and Community Programs.

More information about WBD

Contact Michael Brambley (509) 375-6875 www.buildingsystemsprogram.pnl.gov/

10.6 Reference

Friedman, H. and M.A. Piette. 2001. Comparative Guide to Emerging Diagnostic Tools for Large Commercial HVAC Systems. LBNL No. 48629, Lawrence Berkeley National Laboratory, Berkeley, California.

Chapter 11 Ten Steps to Operational Efficiency

Step 1: Strive to *increase management awareness* and appreciation of the operations and maintenance program/department.

- Consider developing a maintenance mission statement and requesting/requiring management sign-off.
- Consider developing a maintenance plan and requesting/requiring management sign-off.
- Begin the development of the OMETA linkages.
 - Develop key points of contact within other departments that can participate in the O&M mission.

Step 2: Commit to begin tracking Operations and Maintenance activities.

- Need to understand where O&M time is spent.
- Need to understand where O&M dollars are spent.
- Consider (strongly) purchasing or enhancing a Computerized Maintenance Management System and commit to its implementation and use.

Step 3: Through tracking begin to *identify your troubled equipment and systems*.

• Make a list of these systems and prioritize them.

Step 4: Commit to addressing at least one of these troubled systems.

- Begin base-lining/tracking this system.
 - System operations and history.
 - System maintenance and history.
 - System costs, time to service, downtime, resulting overtime, etc.

Step 5: Commit to striving for Operational Efficiency of this system.

- Strive to understand how to properly operate this system.
 - Define and complete operator training needs.
- Strive to understand how to properly maintain this system.
 - Define and complete maintenance training needs.

Step 6: Commit to purchasing or contracting for some form(s) of diagnostic, metering, or monitoring equipment.

Step 7: Commit to trending the collected tracking and diagnostic data.

- Take to time to understand the data.
- Look for and develop "project opportunities."
 - Develop appropriate cost justification metrics.

Step 8: Select, request funding for, and complete first "Operational Efficiency" project.

- Start small, pick a project that will be a winner.
- Carefully document all findings.
- Present success in terms management will understand.

Step 9: Strive to highlight this success - capitalize on visibility opportunities.

- Consider writing an internal success story/case study.
- Submit finding to trade publication or industry conference.

Step 10: Commit to choosing the next piece of equipment...go to Step 3.

• Steps 1 and 2 are ONGOING ACTIVITIES!

Appendix A Glossary of Common Terms

Appendix A

Glossary of Common Terms

Absorption chiller – A refrigeration machine using heat as the power input to generate chilled water.

Adjustable speed drive – A means of changing the speed of a motor in a step-less manner. In the case of an AC motor, this is accomplished by varying the frequency.

Aerator – A device installed in a faucet or showerhead that adds air to the water flow, thereby maintaining an effective water spray while reducing overall water consumption.

Air changes – Replacement of the total volume of air in a room over a period of time (e.g., 6 air changes per hour).

Ambient temperature – The temperature of the air surrounding an object.

Ballast – A device used to supply the proper voltage and limit the current to operate one or more fluorescent or high-intensity discharge lamps.

Base – A selected period of time with consumption levels or dollar amounts, to which all future usage or costs are compared.

Blackwater – Water discharged from toilets, urinals, and kitchen sinks.

BLCC – Building Life Cycle Costing.

Blowdown – The discharge of water from a boiler or a cooling tower sump that contains a high proportion of total dissolved solids.

British thermal unit (Btu) – The amount of heat required to raise the temperature of one pound of water 1 degree Fahrenheit at or near 39.2 degrees Fahrenheit.

Building commissioning – A systematic process of assuring that a building facility performs in accordance with design intent and the owner's operational needs. Verification and documentation that all building facility systems perform interactively in an efficient manner and that operations and maintenance personnel are well trained.

Building envelope – The exterior surfaces of a building that are exposed to the weather, i.e., walls, roof, windows, doors, etc.

Celsius (Centigrade) – The temperature at which the freezing point of water is 0 degrees and the boiling point is 100 degrees at sea level.

Centrifugal fan – A device for propelling air by centrifugal action.

cfm – Cubic feet per minute usually refers to the volume of air being moved through an air duct.

Chiller – A refrigeration machine using mechanical energy input to drive a centrifugal compressor to generate chilled water.

Coefficient of performance – Ratio of tons of refrigeration produced to energy required to operate equipment.

Coefficient of utilization – Ratio of lumens on the work surface to total lumens emitted by the lamps.

Cold deck – A cold air chamber forming a part of an air conditioning system.

Combined wastewater – A facility's total wastewater, both graywater and blackwater.

Color rendering index (CRI) – The color appearance of an object under a light source as compared to a reference source.

Condensate – Water obtained by charging the state of water vapor (i.e., steam or moisture in air) from a gas to a liquid usually by cooling.

Condenser – A heat exchanger which removes heat from vapor, changing it to its liquid state. In refrigeration systems, this is the component which rejects heat.

Conduction – Method of heat transfer in which heat moves through a solid.

Convection – Method of heat transfer in which heat moves by motion of a fluid or gas, usually air.

Cooling tower – A device that cools water directly by evaporation.

Damper – A device used to limit the volume of air passing through an air outlet, inlet, or duct.

Degree days – The degree day for any given day is the difference between 65 degrees and the average daily temperature. For example, if the average temperature is 50 degrees, the degree days is 65 - 50 = 15 degrees days. When accumulated for a season, degree days measure the severity of the entire season.

Demand load – The maximum continuous requirement for electricity measured during a specified amount of time, usually 15 minutes.

Demand factor – The ratio of the maximum demand of a system to the total connected load on the system.

Double bundle chiller – A condenser usually in a refrigeration machine that contains two separate tube bundles allowing the option of rejecting heat to the cooling tower or to another building system requiring heat input.

Dry bulb temperature – The measure of the sensible temperature of air.

Economizer cycle – A method of operating a ventilation system to reduce refrigeration load. Whenever the outside air conditions are more favorable (lower heat content) than return air conditions, outdoor air quantity is increased.

Efficacy – Ratio of usable light to energy input for a lighting fixture or system (lumens per watt)

Energy management system – A microprocessor-based system for controlling equipment and monitoring energy and other operating parameters in a building.

Energy requirement – The total yearly energy used by a building to maintain the selected inside design conditions under the dynamic impact of a typical year's climate. It includes raw fossil fuel consumed in the building and all electricity used for lighting and power. Efficiencies of utilization are applied and all energy is expressed in the common unit of Btu.

Energy utilization index – A reference which expresses the total energy (fossil fuel and electricity) used by a building in a given period (month, year) in terms of Btu's/gross conditioned square feet.

Enthalpy – The total heat content of air expressed in units of Btu/pound. It is the sum of the sensible and latent heat.

Evaporator – A heat exchanger in which a liquid evaporates while absorbing heat.

Evaporation – The act of water or other liquids dissipating or becoming vapor or steam.

Faucet aerator – Either a device inserted into a faucet head or a type of faucet head that reduces water flow by adding air to the water steam through a series of screens and/or small holes through a disk. An aerator produces a low-flow non-splashing stream of water.

Flow restrictors – Washer-like disks that fit inside faucet or shower heads to restrict water flow.

Flushometer valve toilet – Also known as a pressure assisted or pressurized tank toilet, a toilet with the flush valve attached to a pressurized water supply tank. When activated, the flush valve supplies the water to the toilet at the higher flow rate necessary to flush all of the waste through the toilet trap and into the sewer.

Foot candle – Illumination at a distance of one foot from a standard candle.

Gravity flush toilet – A toilet designed with a rubber stopper that releases stored water from the toilet's tank. Gravity flow water then fills the bowl and carries the waste out of the bowl, through the trap and into the sewer.

Graywater – Used water discharged by sinks, showers, bathtubs, clothes washing machines, and the like.

Gross square feet – The total number of square feet contained in a building envelope using the floors as area to be measured.

Heat gain – As applied to HVAC calculations, it is that amount of heat gained by space from all sources including people, lights, machines, sunshine, etc. The total heat gain represents the amount of heat that must be removed from a space to maintain indoor comfort conditions. This is usually expressed in Btu's per hour.

Heat loss – The heat loss from a building when the outdoor temperature is lower than the desired indoor temperature it represents the amount of heat that must be provided to a space to maintain indoor comfort conditions. This is usually expressed in Btu/hour.

Heat pump – A refrigeration machine possessing the capability of reversing the flow so that its output can be either heating or cooling. When used for heating, it extracts heat from a low temperature source.

Heat transmission coefficient – Any one of a number of coefficients used in the calculation of heat transmission by conduction, convection, and radiation through various materials and structures.

Horsepower (hp) – British unit of power, 1 Hp = 746 watts or 42,408 Btu's per minute.

Hot deck – A hot air chamber forming part of a multi-zone or dual duct air handling unit.

Humidity, relative – A measurement indicating the moisture content of the air.

IAQ - Indoor Air Quality.

IEQ - Indoor Environmental Quality.

Infiltration – The process by which outdoor air leaks into a building by natural forces through cracks around doors and windows.

Latent heat – The quantity of heat required to effect a change in state of a substance.

Life cycle cost – The cost of the equipment over its entire life including operating costs, maintenance costs, and initial cost.

Low flow toilet – A toilet that uses 3.5 gallons of water per flush.

Load profile – Time distribution of building heating, cooling, and electrical load.

Lumen – Unit of measurement of rate of light flow.

Luminaire – Light fixture designed to produce a specific effect.

Makeup – Water supplied to a system to replace that lost by blowdown, leakage, evaporation, etc. Air supplied to a system to provide for combustion and/or ventilation.

Modular – System arrangement whereby the demand for energy (heating, cooling) is met by a series of units sized to meet a portion of the load.

Orifice plate – Device inserted in a pipe or duct which causes a pressure drop across it. Depending on orifice size, it can be used to restrict flow or form part of a measuring device.

ORSAT apparatus – A device for measuring the combustion components of boiler or furnace flue gasses.

Piggyback operation – Arrangement of chilled water generation equipment whereby exhaust steam from a steam turbine driven centrifugal chiller is used as the heat source of an absorption chiller.

Plenum – A large duct used as a distributor of air from a furnace.

Potable water - Clean, drinkable water; also known as "white" water.

Power factor – Relationship between KVA and KW. The power factor is one when the KVA equals the KW.

Pressurized tank toilet – A toilet that uses a facility's waterline pressure by pressurizing water held in a vessel within the tank; compressing a pocket of trapped air. The water releases at a force 500 times greater than a conventional gravity toilet.

Pressure reducing valve – A valve designed to reduce a facility's water consumption by lowering supply-line pressure.

Radiation – The transfer of heat from one body to another by heat waves without heating the air between them.

R Value – The resistance to heat flow of insulation.

Seasonal efficiency – Ratio of useful output to energy input for a piece of equipment over an entire heating or cooling season. It can be derived by integrating part load efficiencies against time.

Sensible heat – Heat that results in a temperature change, but no change in state.

Siphonic jet urinal – A urinal that automatically flushes when water, which flows continuously to its tank, reaches a specified preset level.

Source meter – A water meter that records the total waterflow into a facility.

Sub meter – A meter that record energy or water usage by a specific process, a specific part of a building, or a building within a larger facility.

Therm – A unit of gas fuel containing 100,000 Btu's.

Ton (of refrigeration) – A means of expressing cooling capacity: 1 ton = 12,000 Btu/hour cooling (removal of heat).

U Value – A coefficient expressing the thermal conductance of a composite structure in Btu's per (square foot) (hour) (degree Fahrenheit difference).

Ultra low flow toilet – A toilet that uses 1.6 gallons or less of water per flush.

Variable speed drive – See "Adjustable speed drive."

Variable frequency drive – See "Adjustable speed drive."

Veiling reflection – Reflection of light from a task or work surface into the viewer's eyes.

Vapor barrier – A moisture impervious layer designed to prevent moisture migration.

Wet bulb temperature – The lowest temperature attainable by evaporating water in the air without the addition or subtraction of energy.

Xeriscaping – The selection, placement, and care of water-conserving and low-water-demand ground covers, plants, shrubs, and trees in landscaping.

Appendix B FEMP Staff Contact List

Appendix B

FEMP Staff Contact List

General Information

EERE Information Center: (877) 337-3463

FEMP Main Office: (202) 586-5772

FEMP Fax: (202) 586-3000

Mailing Address:

EE-2L

1000 Independence Ave., SW Washington, D.C. 20585-0121

Schuyler (Skye) Schell, Acting Program Manager (202) 586-9015 schuyler.schell@ee.doe.gov

Schuyler (Skye) Schell Team Lead, Agency Services (202) 586-9015 schuyler.schell@ee.doe.gov

Brian Connor Team Lead, Internal Departmental (202) 586-3756 brian.connor@ee.doe.gov

FEMP Administration

Ladeane Moreland Administrative Assistant (202) 586-9846 ladeane.moreland@ee.doe.gov

Customer Service, Planning, and Outreach

Nellie Greer Awards Program/Technical Assistance Communications (202) 586-7875 nellie.tibbs@ee.doe.gov Annie Haskins Outreach/FEMP Focus (202) 586-4536 annie.haskins@ee.doe.gov

Rick Klimkos Annual Report/Interagency Coordination (202) 586-8287 rick.klimkos@ee.doe.gov

Earl Blankenship Publications Manager (202) 586-4812 earl.blankenship@ee.doe.gov

External Service Delivery

Ted Collins
Training Programs/New Technology Demonstrations
(202) 586-8017
theodore.collins@ee.doe.gov

Anne Sprunt Crawley Renewable Energy, Greening, and Software (202) 586-1505 anne.crawley@ee.doe.gov

Danette Delmastro Super ESPC Program (202) 586-7632 danette.delmastro@ee.doe.gov

Beverly Dyer Sustainability Program Manager (202) 586-7241 beverly.dyer@ee.doe.gov

Brad Gustafson Utility Program (202) 586-5865 brad.gustafson@ee.doe.gov

Shawn Herrera Design Assistance (202) 586-1511 shawn.herrera@ee.doe.gov Ab Ream O&M Program Manager (202) 586-7230 ab.ream@ee.doe.gov

Tatiana Strajnic Super ESPC Program (202) 586-9230 tatiana.strajnic@ee.doe.gov

Alison Thomas Procurement (702) 914-3868 alison.thomas@ee.doe.gov

Principal DOE National Laboratory Liaisons

Bill Carroll Lawrence Berkeley National Laboratory (510) 486-4890 wlcarroll@lbl.gov

Mary Colvin National Renewable Energy Laboratory (303) 386-7511 mary_colvin@nrel.gov

Patrick Hughes
Oak Ridge National Laboratory
(865) 574-9337
pj1@ornl.gov

Paul Klimas Sandia National Laboratory (505) 844-8159 pcklima@sandia.gov

Bill Sandusky Pacific Northwest National Laboratory (509) 375-3709 bill.sandusky@pnl.gov

DOE Regional Office FEMP Team

For more information about how FEMP can help your agency save energy, contact a regional office representative in your area.

Central

Denver Regional Office 1617 Cole Boulevard Golden, Colorado 80401 FAX: (303) 275-4830

Randy Jones, 303-275-4814 randy.jones@ee.doe.gov

Midwest

Chicago Regional Office 1 South Wacker Drive, Suite 2380 Chicago, Illinois 60606 FAX: (312) 886-8561

Michael Bednarz, (312) 886-8585 michael.bednarz@ee.doe.gov

Southeast

Southeast Regional Office 75 Spring Street, SW, Suite 200 Atlanta, Georgia 30303 FAX: (404) 562-0538

Doug Culbreth, (919) 870-0051 carson.culbreth@ee.doe.gov

Lisa Hollingsworth (Atlanta RO) (404) 562-0569 lisa.hollingsworth@ee.doe.gov

Mid-Atlantic

Philadelphia Regional Office 1880 JFK Boulevard, Suite 501 Philadelphia, Pennsylvania 19102 FAX: (212) 264-2272

Claudia Marchione (215) 656-6967

Northeast

Boston Regional Office JFK Federal Building, Room 675 Boston, Massachusetts 02203 FAX: (617) 565-9723

Paul King (617) 565-9712 paul.king@ee.doe.gov

Western

Seattle Regional Office 800 Fifth Avenue, Suite 3950 Seattle, Washington 98104 FAX: (206) 553-2200

Cheri Sayer (206) 553-7838 cheri.sayer@ee.doe.gov

Curtis Framel (Seattle RO) (206) 553-7841 curtis.framel@ee.doe.gov

Arun Jhaveri (Seattle RO) (206) 553-2152 arun.jhaveri@ee.doe.gov

Eileen Yoshinaka (Seattle RO in HI) (808) 541-2564 eileen.yoshinaka@ee.doe.gov

Scott Wols (206) 553-2405 scott.wols@ee.doe.gov

Appendix C

Resources

Appendix C

Resources

The references and resources provided below are by no means all-inclusive. The listed organizations are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web.

O&M Professional/Trade Associations

EFCOG

Energy Facility Contractors Group www.efcog.org

International Maintenance Institute (IMI)

www.imionline.org

Society for Maintenance & Reliability Professionals (SMRP)

Operates an emailing/discussion function. Anyone can join by simply sending an email message with the word SUBSCRIBE in the body of the message to: network - request@mailserv.tenagra.com http://www.smrp.org/

Washington Association of Maintenance and Operations Administrators (WAMOA)

Educational Facilities Maintenance Professionals in Washington State Contact Kathy Vega, Seattle Regional Support Office

World Federation of Building Service Contractors

Fairfax, VA (703) 359-7090

Organizations with Some O&M Interests

American Society of Mechanical Engineers (ASME)

Founded in 1880, today ASME International is a nonprofit educational and technical organization serving a world-wide membership of 125,000 and conducts one of the world's largest technical publishing operations, holds some 30 technical conferences and 200 professional development courses each year, and sets many industrial and manufacturing standards. The work of ASME is performed by its member-elected Board of Governors and through its 5 councils, 44 boards, and hundreds of committees in 13 regions throughout the world. There are a combined 400 sections and student sections serving ASME's world-wide membership. ASME's vision is to be the premier organization for promoting the art, science, and practice of mechanical engineering throughout the world. http://www.asme.org/

Association for Facilities Engineering (AFE)

Formerly the American Institute of Plant Engineers. AFE Facilities Engineering Journal http://www.facilitiesnet.com/NS/NS1afe.html

Association for Facilities Engineering (AFE)

Provides education, certification, technical information, and other relevant resources for plant and facility engineering, operations, and maintenance professionals worldwide. http://www.afe.org/

Association of Energy Engineers (AEE)

The role of today's facility manager spans a cross-section of job responsibilities including: energy procurement, security, building performance, maintenance scheduling, equipment upgrades, multi-site portfolio management, budget planning, energy efficiency, communications technology, environmental compliance, and employee productivity. The FMI division of AEE is dedicated to providing its members industry information, conference and seminar programs, reference books, and market-place surveys to enhance your knowledge base and job effectiveness. http://www.aeecenter.org/divisions/

Association of Higher Education Facilities Officers

http://www.appa.org/

Boiler Efficiency Institute

P.O. Box 2255 Auburn, AL 36831-2255 (334) 821-3095 www.boilerinstitute.com

Building Owners and Managers Association

Publish: "How to Design and Manage your Preventive Maintenance Program" http://www.boma.org/index2.htm

Canadian Infrared Thermographer Association

http://www.imtonline.ca/CITA-mainpage.htm

Condition-Based Maintenance (CBM)

Becoming more widespread within U.S. industry and military. A complete CBM system comprises a number of functional capabilities and the implementation of a CBM system requires the integration of a variety of hardware and software components. There exists a need for an Open System Architecture to facilitate the integration and interchangeability these components from a variety of sources. OSA-CBM is striving to build a de-facto standard to encompass the entire range of functions from data collection through the recommendation of specific maintenance actions. http://www.osacbm.org/

Facilities Net

For professionals in facility design, construction, and maintenance related to or product of Tradelines who arranges executive level conference on facility programs for corporations and universities. http://www.facilitiesnet.com/NS/NS1afe.html

Institute of Asset Management (IAM)

The independent organization for professionals dedicated to furthering our knowledge and understanding of Asset Management. In particular, the institute seeks to spread good practice and develop decision support tools and techniques. http://www.iam-uk.org/

Institute of Electrical and Electronics Engineers (IEEE)

IEEE's Reliability Society is the world's largest technical professional society. http://www.ewh.ieee.org/soc/rs/Useful_Information/Links.htm

Institute of Industrial Engineers (IIE)

http://www.iienet.org/

International Council for Machinery Lubrication (ICML)

A vendor-neutral, not-for-profit organization founded to facilitate growth and development of machine lubrication as a technical field of endeavor. Among its various activities, ICML offers skills-based certification testing for individuals in the fields of machine condition monitoring, lubrication, and oil analysis.

http://www.lubecouncil.org

International Facilities Management Association (IFMA)

http://www.ifma.org/

Machinery Information Management Open Systems Alliance (MIMOSA)

Advocates open exchange of equipment condition related information between condition assessment, process control, and maintenance information systems through published, consensus, conventions and to gain greatest value by combining vital condition information from multiple sources for collective evaluation, reaching accurate determinations of current condition, and projected lifetime and communicating results in a useful, understandable form. MIMOSA is committed to preserving the advantages, effectiveness, and rich detail contained in specialized applications such as vibration, temperature, lubricating oil, and electric motor monitoring and analysis systems within an integrated enterprise information structure.

http://www.mimosa.org/

Maintenance and Reliability Center (MRC)

A premier institution, headquartered at the University of Tennessee, for education, research, development, information exchange and application of maintenance and reliability engineering. Maintenance and reliability engineering focuses on the use of analysis techniques, advanced predictive and preventive technologies and management systems to identify, manage and eliminate failures that lead to losses in system function.

http://www.engr.utk.edu/mrc/

Motor Decisions Matter

A national campaign encouraging the use of sound motor management and planning as a tool to cut motor energy costs and increase productivity. The campaign is sponsored by a consortium of motor industry manufacturers and service centers, trade associations, electric utilities, and government agencies.

DOE Office of Industrial Technologies Clearinghouse 1-800-862-2086 www.motorsmatter.org/

National Association of Energy Service Companies (NAESCO)

1615 M Street, NW, Suite 800 Washington, D.C. 20036 (202) 822-0955 www.naesco.org

National Association of State Energy Officials (NASEO)

14141 Prince Street, Suite 200 Alexandria, VA 22314 (703) 299-8800 www.naseo.org

National Association of State Procurement Officials (NASPO)

http://www.naspo.org

National Reliability Engineering Center

http://www.enre.umd.edu//reinfo.htm

National School Plant Management Association (NSPMA)

Chartered in 1995, NSPMA was formed in the interest on enhancing and promoting the educational process. Its purpose is to provide for the exchange of information that improves school plant management, maintenance, and care through the promotion of acceptable policies, standards, and practices and to promote the professional advancement of school plant management personnel. http://nspma.org/

Oklahoma Predictive Maintenance Users Group (OPMUG)

Established in 1992 to provide maintenance professionals throughout Oklahoma, and the surrounding states, an opportunity to share and obtain first hand knowledge about predictive maintenance. http://www.opmug.net/

Plant Engineering and Maintenance Association of Canada (PEMAC)

The national technical association devoted to plant engineering and maintenance, created by and for plant engineering and maintenance people. http://www.pemac.org

Professional Thermographers Association

http://www.prothermographer.com

Reliability Division American Society for Quality

http://www.asq-rd.org/

Society for Machinery Failure Prevention Technology (MFPT)

A Division of the Vibration Institute, MFPT acts as a focal point for technological developments that contribute to mechanical failure reduction or prevention. http://www.mfpt.org/

Society for Maintenance & Reliability Professionals (SMRP)

An independent, non-profit society by and for practitioners in the Maintenance & Reliability Profession with nearly 2,000 members strong with global penetration. www.smrp.org

Society of Reliability Engineers (SRE)

We hope you will find our Web site interesting and useful. Here, you may contact the Society Officers, become better acquainted with other SRE Chapters, and discover other links of interest to the Reliability Engineer.

http://www.sre.org/

University of Maryland - Reliability Engineering Program

http://www.enre.umd.edu/enreumd.htm

O&M Publications

Building Operating Management

www.facilitiesnet.com/NS

Chilton's Industrial Maintenance and Plant Operation

www.impomag.com

HPAC Engineering

1300 E Ninth Street Cleveland, OH 44114-1503 (216) 696-7000 www.hpac.com

Industrial Maintenance and Plant Operation

www.impomag.com

Maintenance Solutions

P.O. Box 5268 Pittsfield, MA 01203-5268 www.facilitiesnet.com

Maintenance Technology

(847) 382-8100/Fax: (847) 304-8603 www.mt-online.com

P/PM Technology

SC Publishing P.O. Box 2770 Minden, NV 89423-2770 (702) 267-3970

Plant & Facilities Engineering Digest

Adams/Huecore Publishing, Inc. 29100 Aurora Road, Suite 200 Cleveland, OH 44139 (708) 291-5222

Preventative Maintenance Magazine

Reliability Magazine

www.reliability-magazine.com/

Events Related to O&M

Association of Energy Engineers

World Energy and Engineering Conference held every November in Atlanta. AEE, 700 Indian Trail Lilburn, GA 30247

Machinery Reliability Conference

Reliability Magazine www.reliability-magazine.com

Maintenance Engineering-98

Annual conference sponsored by The Maintenance Engineering Society of Australia Inc. (MESA). Contact ME-98
P.O. Box 5142
Clayton, Victoria, 3168, Australia
+61 3 9544 0066, Fax +61 3 9543 5906.

National Association of State Procurement Officials (NASPO)

Contact: Katie Kroehle (202) 586-4858

National Predictive Maintenance Technology Conference

P/PM Magazine

Phone: (702) 267-3970; Fax: (702) 367-3941

Professional Trade Shows, Inc.

Professional Trade Shows, Inc. produces 30 trade shows and conference events in 25 urban centers throughout the United States. Their primary focus is the plant engineering and maintenance industry, and also produce a select number of material handling and machine tools shows. http://www.proshows.com/

Government Organizations

DOE OIT Clearinghouse

(800) 862-2086

Energy Efficiency and Renewable Energy Network (EREN)

www.eren.doe.gov

Federal Energy Management Program (FEMP)

U.S. Department of Energy www.eere.energy.gov/femp

U.S. General Services Administration

www.gsa.gov

Appendix D Suggestions for Additions or Revisions

Appendix D

Suggestions for Additions or Revisions

This guide is open to periodic updates and improvement. Readers are encouraged to submit suggestions for additions, deletions, corrections, or where to go for other resources.

In addition, we are interested in what has worked at your federal site. We want to find other case studies and documentation of your successes.

Please send or fax your information to:

Greg Sullivan Pacific Northwest National Laboratory (PNNL) P.O. Box 999, MS K6-10 Richland, WA 99352 email: gp.sullivan@pnl.gov Fax (509) 372-4370 Additional material to include (please be specific): Additional References/Resources: Case study material (feel free to attach additional sheets):